The emergence of lethal coronaviruses follows a periodic pattern which suggests a recurring cycle of outbreaks. It remains uncertain as to when the next lethal coronavirus will emerge, though its eventual emergence appears to be inevitable. New mutations in evolving SARS-CoV-2 variants have provided resistance to current antiviral drugs, monoclonal antibodies, and vaccines, reducing their therapeutic efficacy. This underscores the urgent need to investigate alternative therapeutic approaches. Sigma receptors have been unexpectedly linked to the SARS-CoV-2 life cycle due to the direct antiviral effect of their ligands. Coronavirus-induced cell stress facilitates the formation of an ER-derived complex conducive to its replication. Sigma receptor ligands are believed to prevent the formation of this complex. Repurposing FDA-approved drugs for COVID-19 offers a timely and cost-efficient strategy to find treatments with established safety profiles. Notably, diphenhydramine, a sigma receptor ligand, is thought to counteract the virus by inhibiting the creation of ER-derived replication vesicles. Furthermore, lactoferrin, a well-characterized immunomodulatory protein, has shown antiviral efficacy against SARS-CoV-2 both in laboratory settings and in living organisms. In the present study, we aimed to explore the impact of sigma receptor ligands on SARS-CoV-2-induced mortality in ACE2-transgenic mice. We assessed the effects of an investigational antiviral drug combination comprising a sigma receptor ligand and an immunomodulatory protein. Mice treated with sigma-2 receptor ligands or diphenhydramine and lactoferrin exhibited improved survival rates and rapid rebound in mass following the SARS-CoV-2 challenge compared to mock-treated animals. Clinical translation of these findings may support the discovery of new treatment and research strategies for SARS-CoV-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647780 | PMC |
http://dx.doi.org/10.3390/ijms242115718 | DOI Listing |
Int J Biol Macromol
December 2024
Laboratory of Quantum and Statistical Physics LR 18 ES 18, Faculty of Sciences of Monastir, Environnement Street, 5019 Monastir, Tunisia.
In this study, the olfactory threshold concentration was introduced in the statistical physics approach to provide fruitful and deep discussions. Indeed, a modified mono-layer mono-energy model established using statistical physics theory was successfully used to theoretically study the adsorption involved in the olfactory response of (R)-(-)-carvone and (S)-(+)-carvone key food odorants (KFOs) on cow (Bos taurus) olfactory receptor btOR1A1 through the analysis of the different model physicochemical parameters. Thus, stereographic results indicated that the two carvone enantiomers were non-parallelly docked on btOR1A1 binding sites during the adsorption process since the different values of n were superior to 1.
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand; Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand. Electronic address:
Model organisms are commonly used to study human diseases; we set out to understand the relevance of several model organisms with relation to the σ1R protein. The study explored the interactions of σ1R with various agonists, antagonists across different species. Ligand and protein-protein (σ1R-BiP) docking approaches were used to understand the significance of σ1R in modulating neuroprotective mechanisms and its potential role in Alzheimer's.
View Article and Find Full Text PDFFront Mol Neurosci
December 2024
Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia.
As many proteins prioritize functionality over constancy of structure, a proteome is the shortest stave in the Liebig's barrel of cell sustainability. In this regard, both prokaryotes and eukaryotes possess abundant machinery supporting the quality of the proteome in healthy and stressful conditions. This machinery, namely chaperones, assists in folding, refolding, and the utilization of client proteins.
View Article and Find Full Text PDFAnal Chem
December 2024
Instituto de Biomedicina y Genética Molecular, Unidad de Excelencia, University of Valladolid-CSIC, Valladolid 47003, Spain.
Lipid rafts are liquid-ordered domains in which specific enzymes and receptors are located. These membrane platforms play crucial roles in a variety of signaling pathways. Alterations in the lipid environment, such as those elicited by oxidative stress, can lead to important functional disruptions in membrane proteins.
View Article and Find Full Text PDFNeuroscience
December 2024
Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland.
It is common knowledge that the cerebellum is a structure of the central nervous system that influences the processes of balance and motor coordination. Recently its influence on social interactions has also been emphasized. The sigma receptor agonist: 3-di-o-tolylguanidine (DTG) is characterized by high affinity for sigma 1 and sigma 2 receptors, widely distributed in the cerebellum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!