The scourge of type-1 diabetes (T1D) is the morbidity and mortality it and its complications cause at a younger age. This propels the constant search for better diagnostic, treatment, and management strategies, with the ultimate quest being a cure for T1D. Recently, the therapeutic potential of exosomes has generated a lot of interest. Among the characteristics of exosomes of particular interest are (a) their regenerative capacity, which depends on their "origin", and (b) their "content", which determines the cell communication and crosstalk they influence. Other functional capacities, including paracrine and endocrine homeostatic regulation, pathogenic response ability resulting in insulin secretory defects or β-cell death under normal metabolic conditions, immunomodulation, and promotion of regeneration, have also garnered significant interest. Exosome "specificity" makes them suitable as biomarkers or predictors, and their "mobility" and "content" lend credence to drug delivery and therapeutic suitability. This review aims to highlight the functional capacities of exosomes and their established as well as novel contributions at various pathways in the onset and progression of T1D. The pathogenesis of T1D involves a complex crosstalk between insulin-secreting pancreatic β-cells and immune cells, which is partially mediated by exosomes. We also examine the potential implications for type 2 diabetes (T2D), as the link in T2D has guided T1D exploration. The collective landscape presented is expected to help identify how a deeper understanding of exosomes (and their cargo) can provide a framework for actionable solutions to prevent, halt, or change the very course of T1D and its complications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647572 | PMC |
http://dx.doi.org/10.3390/ijms242115713 | DOI Listing |
Curr Diab Rep
January 2025
Department of Family Medicine, University of Colorado School of Medicine, 13199 E Montview Blvd, Aurora, CO, 8004, USA.
Purpose Of Review: Addressing diabetes distress (DD), the emotional demands of living with diabetes, is a crucial component of diabetes care. Most individuals with type 2 diabetes and approximately half of adults with type 1 diabetes receive their care in the primary care setting. This review will provide guidance on addressing DD and implementing targeted techniques that can be tailored to primary care patients.
View Article and Find Full Text PDFNat Commun
January 2025
Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.
Interferon (IFN)-α is the earliest cytokine signature observed in individuals at risk for type 1 diabetes (T1D), but the effect of IFN-α on the antigen repertoire of HLA Class I (HLA-I) in pancreatic β-cells is unknown. Here we characterize the HLA-I antigen presentation in resting and IFN-α-exposed β-cells and find that IFN-α increases HLA-I expression and expands peptide repertoire to those derived from alternative mRNA splicing, protein cis-splicing and post-translational modifications. While the resting β-cell immunopeptidome is dominated by HLA-A-restricted peptides, IFN-α largely favors HLA-B and only marginally upregulates HLA-A, translating into increased HLA-B-restricted peptide presentation and activation of HLA-B-restricted CD8 T cells.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
January 2025
R and D, Salem Microbes Private Limited, Salem, Tamil Nadu, India. Electronic address:
In the face of advancements in health care and a shift towards healthy lifestyle, diabetes mellitus (DM) still presents as a global health challenge. This chapter explores recent advancements in the areas of genetic and molecular underpinnings of DM, addressing the revolutionary potential of CRISPR-based genome editing technologies. We delve into the multifaceted relationship between genes and molecular pathways contributing to both type1 and type 2 diabetes.
View Article and Find Full Text PDFCan J Diabetes
January 2025
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada. Electronic address:
Aims: Attainment of the A1C target of ≤7.0% is consistently low among those living with type 1 diabetes (T1D). We evaluated endocrinologists' acceptability and implementation of A1C targets.
View Article and Find Full Text PDFJ Autoimmun
January 2025
University of Massachusetts Chan Medical School, Department of Medicine, Diabetes Center of Excellence, USA. Electronic address:
Numerous studies highlight the essential role of type I interferon (IFN) responses in type 1 diabetes. The absence of type I IFN signaling is associated with a partial reduction of autoimmune diabetes incidence in LEW.1WR1 rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!