(1) Background: The most significant cause of an unacceptable deviation from the planned dose during respiratory motion is the interplay effect. We examined the correlation between the magnitude of splenic motion and its impact on plan quality for total lymphoid irradiation (TLI); (2) Methods: Static and 4D CT images from ten patients were used for interplay effect simulations. Patients' original plans were optimized based on the average CT extracted from the 4D CT and planned with two posterior beams using scenario-based optimization (±3 mm of setup and ±3% of range uncertainty) and gradient matching at the level of mid-spleen. Dynamically accumulated 4D doses (interplay effect dose) were calculated based on the time-dependent delivery sequence of radiation fluence across all phases of the 4D CT. Dose volume parameters for each simulated treatment delivery were evaluated for plan quality; (3) Results: Peak-to-peak splenic motion (≤12 mm) was measured from the 4D CT of ten patients. Interplay effect simulations revealed that the ITV coverage of the spleen remained within the protocol tolerance for splenic motion, ≤8 mm. The D100% coverage for ITV spleen decreased from 95.0% (nominal plan) to 89.3% with 10 mm and 87.2% with 12 mm of splenic motion; (4) Conclusions: 4D plan evaluation and robust optimization may overcome problems associated with respiratory motion in proton TLI treatments. Patient-specific respiratory motion evaluations are essential to confirming adequate dosimetric coverage when proton therapy is utilized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650483PMC
http://dx.doi.org/10.3390/cancers15215161DOI Listing

Publication Analysis

Top Keywords

splenic motion
20
respiratory motion
12
motion
8
total lymphoid
8
lymphoid irradiation
8
proton therapy
8
plan quality
8
ten patients
8
patients interplay
8
interplay simulations
8

Similar Publications

Background: Magnetic resonance (MR) diffusion-derived 'vessel density' (DDVD) is calculated according to: DDVD = Sb0/ROI - S/ROI, where S and S refer to the tissue signal when -value is 0 or 2 s/mm. S and ROI can also be approximated by other low -values diffusion-weighted imaging (DWI). This study investigates the influence of the second motion probing gradient -value and T2 on DDVD calculations of the liver, spleen, and liver simple cyst.

View Article and Find Full Text PDF

Introduction: Road traffic accidents (RTA) account for a sizable portion of morbidity and mortality globally, with a particularly high incidence among young and active individuals. Patients presenting with polytrauma require a multidisciplinary approach guided by protocols for advanced trauma life support.

Case Report: We report the case of a 31-year-old female, transferred-in to our center following primary care after an RTA on June 17th, 2023.

View Article and Find Full Text PDF

Objectives: Implementation of diffusion-weighted imaging (DWI) for abdominal imaging in children has challenges due to motion artifacts exacerbated by long acquisition times. We aimed to compare acquisition time and image quality between conventional DWI and multi-band (MB) DWI of the liver in children and young adults.

Methods: Clinical MRI exams from May 2023 to January 2024 were reviewed, including four DWI sequences: respiratory-triggered (RTr, clinical standard), free-breathing (FB), MB-DWI with shift factor 1 (MBsf1), and MB-DWI with shift factor 2 (MBsf2).

View Article and Find Full Text PDF

Routine chest CT is not essential for the diagnostic workup for infective endocarditis (IE), but this type of study may be the initial imaging modality in the evaluation of patients ultimately proven to have IE who present to the emergency department with nonspecific clinical symptoms. Although routine chest CT cannot directly assess valvular oscillating motion due to the lack of cine images, we hypothesized that a combination of elongated nodular valve thickening and abnormal orientation to the normal valve with a blind end on routine CT (indirect-oscillation sign) might suggest movable vegetation indirectly. To evaluate this possibility, we studied 27 patients with IE and 35 controls who underwent both routine chest CT and echocardiography.

View Article and Find Full Text PDF

The spleen tyrosine kinase (Syk) is a key regulator in immune cell signaling and is linked to various mechanisms in cancer and neurodegenerative diseases. Although most computational research on Syk focuses on novel drug design, the molecular-level regulatory dynamics remain unexplored. In this study, we utilized 5 × 1 μs all-atom molecular dynamics simulations of the Syk kinase domain, examining it in combinations of activation segment phosphorylated/unphosphorylated (at Tyr525, Tyr526) and the "DFG"-Asp protonated/deprotonated (at Asp512) states to investigate conformational variations and regulatory dynamics of various loops and motifs within the kinase domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!