Multi-Layer Preprocessing and U-Net with Residual Attention Block for Retinal Blood Vessel Segmentation.

Diagnostics (Basel)

Computer Science Department, Faculty of Computers and Informatics, Zagazig University, Zagazig 44511, Egypt.

Published: November 2023

AI Article Synopsis

  • This paper introduces a new two-stage framework for retinal blood vessel segmentation, which aids in diagnosing conditions like atherosclerosis and glaucoma.
  • The first stage includes multi-layer preprocessing that involves noise reduction using advanced neural networks, dynamic data imputation to handle missing data, and data augmentation with a latent diffusion model.
  • In the second stage, a U-Net with a multi-residual attention block is applied, achieving high segmentation performance with impressive Dice, accuracy, precision, and recall scores, while also effectively reducing noise levels.

Article Abstract

Retinal blood vessel segmentation is a valuable tool for clinicians to diagnose conditions such as atherosclerosis, glaucoma, and age-related macular degeneration. This paper presents a new framework for segmenting blood vessels in retinal images. The framework has two stages: a multi-layer preprocessing stage and a subsequent segmentation stage employing a U-Net with a multi-residual attention block. The multi-layer preprocessing stage has three steps. The first step is noise reduction, employing a U-shaped convolutional neural network with matrix factorization (CNN with MF) and detailed U-shaped U-Net (D_U-Net) to minimize image noise, culminating in the selection of the most suitable image based on the PSNR and SSIM values. The second step is dynamic data imputation, utilizing multiple models for the purpose of filling in missing data. The third step is data augmentation through the utilization of a latent diffusion model (LDM) to expand the training dataset size. The second stage of the framework is segmentation, where the U-Nets with a multi-residual attention block are used to segment the retinal images after they have been preprocessed and noise has been removed. The experiments show that the framework is effective at segmenting retinal blood vessels. It achieved Dice scores of 95.32, accuracy of 93.56, precision of 95.68, and recall of 95.45. It also achieved efficient results in removing noise using CNN with matrix factorization (MF) and D-U-NET according to values of PSNR and SSIM for (0.1, 0.25, 0.5, and 0.75) levels of noise. The LDM achieved an inception score of 13.6 and an FID of 46.2 in the augmentation step.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648654PMC
http://dx.doi.org/10.3390/diagnostics13213364DOI Listing

Publication Analysis

Top Keywords

multi-layer preprocessing
12
attention block
12
retinal blood
12
blood vessel
8
vessel segmentation
8
blood vessels
8
retinal images
8
preprocessing stage
8
multi-residual attention
8
matrix factorization
8

Similar Publications

With recent significant advancements in artificial intelligence, the necessity for more reliable recognition systems has rapidly increased to safeguard individual assets. The use of brain signals for authentication has gained substantial interest within the scientific community over the past decade. Most previous efforts have focused on identifying distinctive information within electroencephalogram (EEG) recordings.

View Article and Find Full Text PDF

Computer numerical control (CNC) and machine center (MCT) machines are mechanical devices that manipulate different tools using computer programming as inputs. Predicting failures in CNC and MCT machines before their actual failure time is crucial to reduce maintenance costs and increase productivity. This study is centered around a novel deep learning-based model using a 1D convolutional neural network (CNN) for early fault detection in MCT machines.

View Article and Find Full Text PDF

The Unani Tibb is a medical system of Greek descent that has undergone substantial dissemination since the 11th century and is currently prevalent in modern South and Central Asia, particularly in primary health care. The ingredients of Unani herbal medicines are primarily derived from plants. Our research aimed to address the pressing issues of antibiotic resistance, multi-drug resistance, and the emergence of superbugs by examining the molecular-level effects of Unani ingredients as potential new natural antibiotic candidates.

View Article and Find Full Text PDF

In the field of welding detection, weld bead cross-section morphology serves as a crucial indicator for analyzing welding quality. However, the extraction of weld bead cross-section morphology often relies on manual extraction based on human expertise, which can be limited in consistency and operational efficiency. To address this issue, this paper proposes a multi-layer multi-pass weld bead cross-section morphology extraction method based on row-column grayscale segmentation.

View Article and Find Full Text PDF

-In the digital music era, accurate and trustworthy track recommendations for musical dance electronic products are becoming increasingly important to improve user experiences and attract more consumers. Consumer behavior modeling is critical in user interest learning and has been extensively used in recommender systems to improve recommendation accuracy. This paper proposes a novel AI-empowered consumer behavior analysis method for trustworthy track recommendations over musical dance electronic products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!