Understanding the main ecological factors of the nesting habitat of shorebirds is of great significance in relation to their protection and habitat management. Habitat loss and change due to a lack of water threaten the biodiversity of shorebirds, with impacts likely to be most pronounced in arid lands. We collected the data of 144 nesting sites and 10 ecological factors during the breeding season from April to July each year in 2019 and 2020 in nine river districts in Xinjiang. The MaxEnt model was applied to assess the suitability of nesting habitats for Kentish plovers () in the study area to examine the main factors affecting their nesting habitat. The most suitable nesting habitats are mostly distributed in plain reservoirs in the middle part of the Northern Slope of the Tianshan Mountains, Ebinur Lake and its eastern position in the southwestern Junggar Basin, near Ulungur Lake of the Ulungur river area and the southern Irtysh river area. The distance from water, normalized difference vegetation index, mean temperature of the breeding season, slope, and land use were the main factors affecting the nesting habitat selection of Kentish plovers. It was found that the proportion of suitable nesting habitat protected for the Kentish plovers in the study area was low (851.66 km), accounting for only 11.02% of the total suitable nesting habitat area. In view of the scarcity and importance of water bodies in arid lands and the lack of protection for Kentish plovers at present, it is suggested to strengthen the conservation and management of the regional shorebirds and their habitats by regulating and optimizing the allocation of water resources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648522PMC
http://dx.doi.org/10.3390/ani13213369DOI Listing

Publication Analysis

Top Keywords

nesting habitat
24
kentish plovers
16
arid lands
12
factors nesting
12
suitable nesting
12
nesting
9
ecological factors
8
breeding season
8
nesting habitats
8
plovers study
8

Similar Publications

Assessing Mitigation Translocation as a Tool to Reduce Human-great Horned owl Conflicts.

Environ Manage

January 2025

United States Department of Agriculture, Animal Plant Health Inspection Service, Wildlife Services, Fort Collins, CO, USA.

The great horned owl (Bubo virginianus) is a generalist predator that inhabits wide-ranging territories that are relatively stable throughout the year. These owls are also involved in a variety of human-owl conflicts, including killing of domestic poultry, predating colonially nesting seabirds and shorebirds, and pose a hazard to safe aircraft operations. Managing these conflict situations presents unique challenges as great horned owls are nocturnally active and occupy a wide range of habitats.

View Article and Find Full Text PDF

Background: Biological control in integrated pest management (IPM) often overlooked avian predators until the emergence of the ecosystem services approach. Birds are now recognized as key regulators of pest populations in agroforestry landscapes due to their high mobility. The invasive yellow-legged hornet, introduced into Europe in 2004, threatens agriculture, beekeeping and native pollinators.

View Article and Find Full Text PDF

Understanding how wildlife responds to the spread of human-dominated habitats is a major challenge in ecology. It is still poorly understood how urban areas affect wildlife space-use patterns and consistent intra-specific behavioural differences (i.e.

View Article and Find Full Text PDF

Antimicrobial resistance is an ever-increasing problem for human health, and with only a few novel antimicrobials discovered in recent decades, an extraordinary effort is needed to circumvent this crisis. A promising source of new microbial-derived antimicrobial compounds resides in the large fraction of microbes that are not readily cultured by standard cultivation. It has previously been shown that nests of the social spider contain a diverse bacterial community, where only a small fraction of the microbes could be recovered by standard cultivation.

View Article and Find Full Text PDF

Genetic Identity and Diversity of Loggerhead Sea Turtles in the Central Mediterranean Sea.

Genes (Basel)

December 2024

Conservation Biology Research Group, Department of Biology, University of Malta, MSD2080 Msida, Malta.

The conservation of loggerhead sea turtles () in the central Mediterranean benefits from an in-depth understanding of its population genetic structure and diversity. This study, therefore, investigates in Maltese waters by genetically analysing 63 specimens collected through strandings and in-water sampling, using mitochondrial DNA control region and microsatellites. Additionally, the two nests detected in Malta in 2023 were analysed for the same markers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!