Biomimetic 3D Color-Changing Hydrogel Actuators Constructed Based on Soft Permeable Photonic Crystals.

ACS Appl Mater Interfaces

State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P.R. China.

Published: November 2023

The integration of photonic crystals and self-shaping actuators is a promising method for constructing powerful biomimetic color-changing actuators. The major barrier is that common photonic crystals generally block the transfer/orientation of monomers/fillers and hence hinder the formation of heterogeneous structures for programmed 3D deformations as well as degrade the deformation capacity and mechanical properties of actuators. Herein, we present the construction of complex and strong 3D color-changing hydrogel actuators by asymmetric photolithography based on soft, permeable photonic crystals. The soft permeable photonic crystals are assembled by hydrogel microspheres with an ultralow volume fraction. During the asymmetric photolithography, the monomers in precursor solutions can thus transfer freely to generate heterogeneous microstructures, spatially patterned internal stresses, and interpenetrating networks for programming the deformation trajectories and initial 3D configurations and enhancing mechanical properties of actuators. Various 3D color-changing hydrogel actuators (e.g., flower and scroll painting) are constructed for applications such as information encryption and display.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c14488DOI Listing

Publication Analysis

Top Keywords

photonic crystals
20
color-changing hydrogel
12
hydrogel actuators
12
soft permeable
12
permeable photonic
12
biomimetic color-changing
8
based soft
8
mechanical properties
8
properties actuators
8
asymmetric photolithography
8

Similar Publications

Photonic crystals (PC) play a key role in optical field modulation due to their unique photonic band gaps (PBGs). Anodic aluminum oxide (AAO) prepared by pulse anodization is a promising candidate for PC devices. In this research, an AAO-based PC with multi-band was fabricated on a single-slice & single-material film, which exhibits multi-band responses in the visible-to-near-infrared (vis-NIR) region.

View Article and Find Full Text PDF

Computational microscopy with coherent diffractive imaging and ptychography.

Nature

January 2025

Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA.

Microscopy and crystallography are two essential experimental methodologies for advancing modern science. They complement one another, with microscopy typically relying on lenses to image the local structures of samples, and crystallography using diffraction to determine the global atomic structure of crystals. Over the past two decades, computational microscopy, encompassing coherent diffractive imaging (CDI) and ptychography, has advanced rapidly, unifying microscopy and crystallography to overcome their limitations.

View Article and Find Full Text PDF

A β-cyclodextrin-based supramolecular photonic crystal hydrogel biosensor with macroporous structures for naked-eye visual detection of cholesterol.

Carbohydr Polym

March 2025

College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China. Electronic address:

Cholesterol (CHO) is an essential lipid in cell membranes and a precursor for vital living substances. Abnormal CHO levels can cause cardiovascular diseases. Therefore, simple and accurate monitoring of CHO levels is crucial for early diagnosis and effective management of cardiovascular diseases.

View Article and Find Full Text PDF

Probing the Self-Assembly dynamics of cellulose nanocrystals by X-ray photon correlation spectroscopy.

J Colloid Interface Sci

December 2024

Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden. Electronic address:

Hypothesis: Charge-stabilized colloidal cellulose nanocrystals (CNCs) can self-assemble into higher-ordered chiral nematic structures by varying the volume fraction. The assembly process exhibits distinct dynamics during the isotropic to liquid crystal phase transition, which can be elucidated using X-ray photon correlation spectroscopy (XPCS).

Experiments: Anionic CNCs were dispersed in propylene glycol (PG) and water spanning a range of volume fractions, encompassing several phase transitions.

View Article and Find Full Text PDF

Non-close-packed crystalline arrays of colloidal particles in an elastic matrix exhibit mechanochromism. However, small interparticle distances often limit the range of reversible color shifts and reduce reflectivity during a blueshift. A straightforward, reproducible strategy using matrix swelling to increase interparticle distance and improve mechanochromic performance is presented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!