Individuals with chronic ankle instability show altered regional activation of the peroneus longus muscle during ankle eversion.

Scand J Med Sci Sports

Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.

Published: January 2024

Individuals with chronic ankle instability (CAI) present muscular weakness and potential changes in the activation of the peroneus longus muscle, which likely explains the high recurrence of ankle sprains in this population. However, there is conflicting evidence regarding the role of the peroneus longus activity in CAI, possibly due to the limited spatial resolution of the surface electromyography (sEMG) methods (i.e., bipolar sEMG). Recent studies employing high-density sEMG (HD-sEMG) have shown that the peroneus longus presents differences in regional activation, however, it is unknown whether this regional activation is maintained under pathological conditions such as CAI. This study aimed to compare the myoelectric activity, using HD-sEMG, of each peroneus longus compartment (anterior and posterior) between individuals with and without CAI. Eighteen healthy individuals (No-CAI group) and 18 individuals with CAI were recruited. In both groups, the center of mass (COM) and the sEMG amplitude at each compartment were recorded during ankle eversion at different force levels. For the posterior compartment, the sEMG amplitude of CAI group was significantly lower than the No-CAI group (mean difference = 5.6% RMS; 95% CI = 3.4-7.6; p = 0.0001). In addition, it was observed a significant main effect for group (F  = 9.608; p = 0.0040) with an anterior displacement of COM for the CAI group. These findings suggest that CAI alters the regional distribution of muscle activity of the peroneus longus during ankle eversion. In practice, altered regional activation may impact strengthening programs, prevention, and rehabilitation of CAI.

Download full-text PDF

Source
http://dx.doi.org/10.1111/sms.14535DOI Listing

Publication Analysis

Top Keywords

peroneus longus
24
regional activation
16
ankle eversion
12
cai
9
individuals chronic
8
chronic ankle
8
ankle instability
8
altered regional
8
activation peroneus
8
longus muscle
8

Similar Publications

: Asymptomatic patellar tendon abnormality (APTA) is considered a precursor to patellar tendinopathy (PT), but its pathogenesis remains unclear, especially regarding changes in muscle coordination. Therefore, it is essential to explore the muscle synergy patterns in individuals with APTA. This study recorded sEMG data during stop-jump tasks in 8 APTA and 8 healthy amateur male basketball players in a simulated basketball game.

View Article and Find Full Text PDF

Variations of the ankle anatomy are infrequent and exist as supernumerary muscles and tendons. Often understudied and overlooked, their presence can cause many complications of the lower extremity. These muscles, although often asymptomatic, can cause great pain and complications such as tenosynovitis, tarsal tunnel syndrome, lateral ankle instability, and ankle pain when they impinge on the normal anatomy of the patient.

View Article and Find Full Text PDF

Background: Chronic ankle instability (CAI) has been associated with neuromuscular control dysfunction, particularly of the peroneal musculature.

Research Question: How do neuromuscular characteristics of the peroneal muscles, including corticospinal excitability, strength, proprioception (force sense) and electromyographic measures differ in individuals with CAI compared to healthy control counterparts aged 18-45?

Methods: A systematic review with meta-analysis was conducted by retrieving relevant articles from electronic databases including EBSCOhost (CINAHL Complete, AMED, SPORTDiscus), Ovid (MEDLINE, Embase), Web of Science, Scopus and Cochrane Library as well as Grey literature sources. The eligibility and methodological quality of the included case-control and cross-sectional studies were assessed by two reviewers.

View Article and Find Full Text PDF

Background: The purpose of this study was to clarify the relationships of the tibialis anterior tendon (TAT) and peroneus longus tendon (PLT) with articular cartilage degeneration on the medial cuneiform and first metatarsal.

Methods: We examined 100 feet from 50 Japanese cadavers. The TAT was classified into 4 types based on attachment site area and number of fiber bundles: Type I, two fiber bundles with equal (within 20%) attachment site areas on the first metatarsal and medial cuneiform; Type II, with two fiber bundles and a larger (>20%) attachment site area on the medial cuneiform than on the first metatarsal; Type III, with two fiber bundles and a larger (>20%) attachment site area on the first metatarsal than on the medial cuneiform; and Type IV, with three fiber bundles.

View Article and Find Full Text PDF

-Related Muscular Dystrophies, LGMD, and TMD, in an Estonian Family Caused by the Finnish Founder Variant.

Neurol Genet

December 2024

From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland.

Background And Objectives: Tibial muscular dystrophy (TMD) is an autosomal dominant, slowly progressive late-onset distal myopathy. TMD was first described in 1991 by Udd et al. in Finnish patients, who were later found to harbor a heterozygous unique 11-bp insertion/deletion in the last exon of the gene-the Finnish founder variant (FINmaj).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!