Rapid detection of avian influenza virus based on CRISPR-Cas12a.

Virol J

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

Published: November 2023

Background: Avian influenza (AI) is a disease caused by the avian influenza virus (AIV). These viruses spread naturally among wild aquatic birds worldwide and infect domestic poultry, other birds, and other animal species. Currently, real-time reverse transcription polymerase chain reaction (rRT-PCR) is mainly used to detect the presence of pathogens and has good sensitivity and specificity. However, the diagnosis requires sophisticated instruments under laboratory conditions, which significantly limits point-of-care testing (POCT). Rapid, reliable, non-lab-equipment-reliant, sensitive, and specific diagnostic tests are urgently needed for rapid clinical detection and diagnosis. Our study aimed to develop a reverse transcription recombinase polymerase amplification (RT-RPA)/CRISPR method which improves on these limitations.

Methods: The Cas12a protein was purified by affinity chromatography with Ni-agarose resin and observed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Specific CRISPR RNA (crRNA) and primers targeting the M and NP genes of the AIV were designed and screened. By combining RT-RPA with the Cas12a/crRNA trans-cleavage system, a detection system that uses fluorescence readouts under blue light or lateral flow strips was established. Sensitivity assays were performed using a tenfold dilution series of plasmids and RNA of the M and NP genes as templates. The specificity of this method was determined using H1-H16 subtype AIVs and other avian pathogens, such as newcastle disease virus (NDV), infectious bursal disease virus (IBDV), and infectious bronchitis virus (IBV).

Results: The results showed that the method was able to detect AIV and that the detection limit can reach 6.7 copies/μL and 12 copies/μL for the M and NP gene, respectively. In addition, this assay showed no cross-reactivity with other avian-derived RNA viruses such as NDV, IBDV, and IBV. Moreover, the detection system presented 97.5% consistency and agreement with rRT-PCR and virus isolation for detecting samples from poultry. This portable and accurate method has great potential for AIV detection in the field.

Conclusion: An RT-RPA/CRISPR method was developed for rapid, sensitive detection of AIV. The new system presents a good potential as an accurate, user-friendly, and inexpensive platform for point-of-care testing applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10644463PMC
http://dx.doi.org/10.1186/s12985-023-02232-7DOI Listing

Publication Analysis

Top Keywords

avian influenza
12
influenza virus
8
reverse transcription
8
point-of-care testing
8
rt-rpa/crispr method
8
detection system
8
disease virus
8
aiv detection
8
virus
6
detection
6

Similar Publications

Burying poultry carcasses on farms as a disposal option in crisis situations: learnings and perspectives from a field study during an avian influenza epizootic in France.

Poult Sci

January 2025

Ploufragan-Plouzané-Niort Laboratory, Epidemiology Health and Welfare Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), BP53 22440 Ploufragan, France. Electronic address:

Appropriate disposal of dead farming animals is required to guarantee effective disease control while protecting the environment. In crisis situations, alternatives to rendering can be used, including on-farm burial. The objectives of this study were to: (i) describe the burial and monitoring protocols used on poultry farms in France in response to major avian influenza outbreaks; (ii) assess the effectiveness of the burial protocol, in terms of both technical and biosecurity aspects, and microbiological, physical and chemical changes of the buried materials and the environment over time; (iii) provide recommendations for future burial and follow-up protocols.

View Article and Find Full Text PDF

Reaction-advection-diffusion model of highly pathogenic avian influenza with behavior of migratory wild birds.

J Math Biol

January 2025

School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, Jilin, People's Republic of China.

Wild birds are one of the main natural reservoirs for avian influenza viruses, and their migratory behavior significantly influences the transmission of avian influenza. To better describe the migratory behavior of wild birds, a system of reaction-advection-diffusion equations is developed to characterize the interactions among wild birds, poultry, and humans. By the next-generation operator, the basic reproduction number of the model is formulated.

View Article and Find Full Text PDF

Probing the functional constraints of influenza A virus NEP by deep mutational scanning.

Cell Rep

January 2025

Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA. Electronic address:

The influenza A virus nuclear export protein (NEP) is a multifunctional protein that is essential for the viral life cycle and has very high sequence conservation. However, since the open reading frame of NEP largely overlaps with that of another influenza viral protein, non-structural protein 1, it is difficult to infer the functional constraints of NEP based on sequence conservation analysis. In addition, the N-terminal of NEP is structurally disordered, which further complicates the understanding of its function.

View Article and Find Full Text PDF

Ecological Drivers of Evolution of Swine Influenza in the United States: A Review.

Emerg Microbes Infect

January 2025

Center for Influenza and Emerging Diseases, University of Missouri, Columbia, MO 652011, USA.

Influenza A viruses (IAVs) pose a major public health threat due to their wide host range and pandemic potential. Pigs have been proposed as "mixing vessels" for avian, swine, and human IAVs, significantly contributing to influenza ecology. In the United States, IAVs are enzootic in commercial swine farming operations, with numerous genetic and antigenic IAV variants having emerged in the past two decades.

View Article and Find Full Text PDF

Isoleucine at position 137 of Hemagglutinin acts as a Mammalian adaptation marker of H9N2 Avian influenza virus.

Emerg Microbes Infect

January 2025

Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang Agricultural University, Shenyang, People's Republic of China.

The H9N2 subtype of avian influenza virus (AIV) is widely distributed among poultry and wild birds and is also a threat to humans. During AIV active surveillance in Liaoning province from 2015 to 2016, we identified ten H9N2 strains exhibiting different lethality to chick embryos. Two representative strains, A/chicken/China/LN07/2016 (CKLN/07) and A/chicken/China/LN17/2016 (CKLN/17), with similar genomic background but different chick embryo lethality, were chosen to evaluate the molecular basis for this difference.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!