IL-33 Suppresses the Progression of Atherosclerosis via the ERK1/2-IRF1-VCAM-1 Pathway.

Cardiovasc Drugs Ther

Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, 68 Changle Rd, Nanjing, 210006, Jiangsu, China.

Published: June 2024

Purpose: This study was designed to explore the effects of interleukin 33 (IL-33) on the progression of atherosclerosis and the possible mechanism.

Methods: The adhesion assay was performed on isolated peripheral blood mononuclear cells (PBMCs) and human umbilical vein endothelial cells (HUVEC). The expression of proteins and messenger RNA (mRNA) were detected by western blot and quantitative real-time polymerase chain reaction (PCR), including intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and P-selectin. The effect of IL-33 on the interaction of growth stimulation expressed gene 2 (ST2) with myeloid differentiation factor 88 (MyD88) and interleukin-1 receptor-associated kinase (IRAK) 1/4 were investigated using co-immunoprecipitation assay. An apolipoprotein (Apo) E mice model was used to confirm the effect of IL-33 on atherosclerosis progression. Area of plaques was recorded by hematoxylin-eosin (H&E) staining. The severity of atherosclerosis plaque was evaluated using immunohistochemistry assay, and lipid accumulation was measured by an oil red O staining. In contrast, western blot was performed to detect the expression levels of VCAM-1, extracellular signal-regulated kinase (ERK) 1/2, and interferon regulatory factor 1 (IRF1).

Results: Our study observed that IL-33 suppressed cell adhesion and the expression of VCAM-1 in tumor necrosis factor-α (TNF-α) exposed HUVEC. Moreover, the addition of IL-33 significantly inhibited the expression of IRF1 and the binding level of IRF1 to VCAM-1 and also promoted the phosphorylation level of IRAK1/4 and ERK1/2 compared to TNF-α-stimulated HUVEC. The ST2 neutralizing antibody or ERK pathway inhibitor SCH772984 reversed the regulatory effects of IL-33 on HUVEC, suggesting that IL-33 suppressed IRF1 and VCAM-1 dependent on binding to ST2 and activating the ERK1/2 signaling pathway. Further investigation in vivo confirmed that IL-33 decreased the expressions of IRF1 and VCAM-1 by activating the phosphorylation of ERK1/2 in the thoracic aorta of Apo E mice.

Conclusion: In conclusion, our results demonstrated that IL-33 plays a protective role in the progression of atherosclerosis by inhibiting cell adhesion via the ERK1/2-IRF1-VCAM-1 pathway. This study may provide a potential therapeutic way to prevent the development of atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10557-023-07523-3DOI Listing

Publication Analysis

Top Keywords

cell adhesion
16
progression atherosclerosis
12
irf1 vcam-1
12
il-33
10
erk1/2-irf1-vcam-1 pathway
8
western blot
8
adhesion molecule-1
8
il-33 suppressed
8
atherosclerosis
6
vcam-1
6

Similar Publications

Intrauterine Adhesions (IUA) are a significant cause of infertility and miscarriage, often resulting from trauma to the endometrium. While hysteroscopic adhesiolysis is the primary treatment, the use of hydrogels as anti-adhesion barriers and drug delivery systems is gaining traction for improving patient outcomes. This review aims to explore various hydrogel types, their role in tissue repair, and the integration of stem cell therapy.

View Article and Find Full Text PDF

Probiotics Exert Gut Immunomodulatory Effects by Regulating the Expression of Host miRNAs.

Probiotics Antimicrob Proteins

January 2025

Department of Reproductive Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.

Probiotics exert a diverse range of immunomodulatory effects on the human gut immune system. These mechanisms encompass strengthening the intestinal mucosal barrier, inhibiting pathogen adhesion and colonization, stimulating immune modulation, and fostering the production of beneficial substances. As a result, probiotics hold significant potential in the prevention and treatment of various conditions, including inflammatory bowel disease and colorectal cancer.

View Article and Find Full Text PDF

Aims: Human periodontal ligament stem cells (hPDLSCs) exhibit an enormous potential to regenerate periodontal tissue. However, their translatability to the clinical setting is constrained by technical difficulties in standardizing culture conditions. The aim was to assess complex culture conditions using a proteomic-based protocol to standardize multi-layer hPDLSC cultivation methodology.

View Article and Find Full Text PDF

The therapeutic window of antibody drug-conjugates (ADC) remains challenging due to safety issues such as interstitial lung disease (ILD) observed with specific deruxtecan-based ADCs. To avoid ILD, we designed M9140 by conjugating the maleimide-containing hydrophilic β-glucuronide linker to exatecan and our anti-CEACAM5 (CarcinoEmbryonic Antigen-related Cell Adhesion Molecule 5) specific antibody. Following repeated iv-infusion at 3 to 30 mg/kg of M9140 every 3 weeks, the pathological findings obtained in cynomolgus monkeys were confined to gastrointestinal and hematolymphoid tissues and resembled the toxicity of exatecan.

View Article and Find Full Text PDF

Development of machine learning models for diagnostic biomarker identification and immune cell infiltration analysis in PCOS.

J Ovarian Res

January 2025

Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.

Background: Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting women of reproductive age. It is characterized by symptoms such as hyperandrogenemia, oligo or anovulation and polycystic ovarian, significantly impacting quality of life. However, the practical implementation of machine learning (ML) in PCOS diagnosis is hindered by the limitations related to data size and algorithmic models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!