Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we developed a model to predict culture test results for pulmonary tuberculosis (PTB) with a customized multimodal approach and evaluated its performance in different clinical settings. Moreover, we investigated potential performance improvements by combining this approach with deep learning-based automated detection algorithms (DLADs). This retrospective observational study enrolled patients over 18 years of age who consecutively visited the level 1 emergency department and underwent chest radiograph and sputum testing. The primary endpoint was positive sputum culture for PTB. We compared the performance of the diagnostic models by replacing radiologists' interpretations of chest radiographs with screening scores calculated through DLAD. The optimal diagnostic model had an area under the receiver operating characteristic curve of 0.924 (95% CI 0.871-0.976) and an area under precision recall curve of 0.403 (95% CI 0.195-0.580) while maintaining a specificity of 81.4% when sensitivity was fixed at 90%. Multicomponent models showed improved performance for detecting PTB when chest radiography interpretation was replaced by DLAD. Multicomponent diagnostic models with DLAD customized for different clinical settings are more practical than traditional methods for detecting patients with PTB. This novel diagnostic approach may help prevent the spread of PTB and optimize healthcare resource utilization in resource-limited clinical settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643438 | PMC |
http://dx.doi.org/10.1038/s41598-023-47146-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!