Incorporation of fluoroalkyl motifs in pharmaceuticals can enhance the therapeutic profiles of the parent molecules. The hydrofluoroalkylation of alkenes has emerged as a promising route to diverse fluoroalkylated compounds; however, current methods require superstoichiometric oxidants, expensive/oxidative fluoroalkylating reagents and precious metals, and often exhibit limited scope, making a universal protocol that addresses these limitations highly desirable. Here we report the hydrofluoroalkylation of alkenes with cheap, abundant and available fluoroalkyl carboxylic acids as the sole reagents. Hydrotrifluoro-, difluoro-, monofluoro- and perfluoroalkylation are all demonstrated, with broad scope, mild conditions (redox neutral) and potential for late-stage modification of bioactive molecules. Critical to success is overcoming the exceedingly high redox potential of feedstock fluoroalkyl carboxylic acids such as trifluoroacetic acid by leveraging cooperative earth-abundant, inexpensive iron and redox-active thiol catalysis, enabling these reagents to be directly used as hydroperfluoroalkylation donors without pre-activation. Preliminary mechanistic studies support the radical nature of this cooperative process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10983801 | PMC |
http://dx.doi.org/10.1038/s41557-023-01365-0 | DOI Listing |
Adv Sci (Weinh)
December 2024
Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
Given the widespread presence of fluoroalkyl functionalities in bioactive molecules, the development of fluoroalkylation reactions with bench-stable and easy-to-use fluoroalkylating reagents is highly desirable. In addition, realization of mono-, di-, tri-, or polyfluoroalkyation usually requires distinct types of fluoroalkylating reagents under different or even harsh reaction conditions, and a universal method to accomplish different hydrofluoroalkylation of alkenes is lacking. Herein, the use of quaternary fluoroalkyl alcohols is reported as the universal fluoroalkylating reagents to readily facilitate mono-, di-, tri-, or polyfluoroalkylation of a wide range of alkene substrates in high yields.
View Article and Find Full Text PDFAcc Chem Res
October 2024
Department of Chemistry, Rice University, 6100 Main St, Houston, Texas 77005, United States.
ConspectusClassical education in organic chemistry and catalysis, not the least my own, has centered on two-electron transformations, from nucleophilic attack to oxidative addition. The focus on two-electron chemistry is well-founded, as this brand of chemistry has enabled incredible feats of synthesis, from the development of life-saving pharmaceuticals to the production of ubiquitous commodity chemicals. With that said, this approach is in many ways complementary to the approach of nature, where enzymes frequently make use of single-electron "radical" steps to achieve challenging reactions with exceptional selectivity, including light detection and C-H hydroxylation.
View Article and Find Full Text PDFOrg Lett
October 2024
Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China.
We have developed a dual-catalytic system capable of site-selective azidation of inert C(sp)-H bonds with concomitant and modular anti-Markovnikov alkene fluoroalkylation. The protocol leverages the synergetic cooperation of both the photocatalyst and earth-abundant iron catalyst to deliver two radical species in succession to minimally functionalized alkenes. This powerful catalyst system exhibits broad scope, mild conditions, and excellent regioselectivity for a variety of substrates and fluoroalkyl fragments.
View Article and Find Full Text PDFJ Org Chem
August 2024
N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation.
Science
July 2024
DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
Enzymes capable of assimilating fluorinated feedstocks are scarce. This situation poses a challenge for the biosynthesis of fluorinated compounds used in pharmaceuticals, agrochemicals, and materials. We developed a photoenzymatic hydrofluoroalkylation that integrates fluorinated motifs into olefins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!