Microalgae have the potential to become the primary source of biodiesel, catering to a wide range of essential applications such as transportation. This would allow for a significant reduction in dependence on conventional petroleum diesel. This study investigates the effect of biostimulation techniques utilizing nanoparticles of Magnesium oxide MgO, Calcium hydroxyapatite Ca(PO)(OH), and Zinc oxide ZnO to enhance the biodiesel production of Chlorella sorokiniana. By enhancing cell activity, these nanoparticles have demonstrated the ability to improve oil production and subsequently increase biodiesel production. Experimentally, each nanomaterial was introduced at a concentration of 15 mg L. The results have shown that MgO nanoparticles yielded the highest biodiesel production, with a recorded yield of 61.5 mg L. Hydroxyapatite nanoparticles, on the other hand, facilitated lipid accumulation. ZnO nanoparticles showcased a multifaceted advantage by enhancing both growth and lipid content. Thus, it is suggested that these nanoparticles can be used effectively to increase the lipid content of microalgae. These findings highlight the potential of biostimulation strategies utilizing MgO, hydroxyapatite, and zinc oxide nanoparticles to bolster biodiesel production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643612 | PMC |
http://dx.doi.org/10.1038/s41598-023-46790-w | DOI Listing |
Bioresour Technol
January 2025
Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Punjab 38000, Pakistan.
In pursuit of sustainability and resource efficiency, concept of the circular economy has emerged as a promising framework for industries worldwide. The global fish processing industry generates a significant amount of waste, posing environmental challenges and economic inefficiencies. The substantial volume of fish waste generated globally along with its environmental impact highlights the urgent need to adopt sustainable practices.
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Electronic address:
Bioenergy crops have been known for their ability to produce biofuels and bioproducts. In this study, the product portfolio of recently developed transgenic sugarcane (oilcane) bagasse has been redefined for recovering natural pigments (anthocyanins), sugars, and vegetative lipids.The total anthocyanin content in oilcane bagasse has been estimated as 92.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China. Electronic address:
Glycerol is one of the most important biomass platform compounds that is a by-product of biodiesel production, and the selective cleavage of the CC bond of glycerol to produce liquid hydrogen carriers (i.e., formic acid and formaldehyde) offers a viable strategy to alleviate the currently faced energy shortages.
View Article and Find Full Text PDFFood Chem
January 2025
Department Food Science, Federal University of Lavras, Lavras 37200-000, MG, Brazil.
Emulsions were prepared from T. vulgaris essential oil using the surfactants Pluronic F127 and Tween 80 by mechanical agitation (Emulsion_Tw and Emulsion_Pl) and sonication using an ultrasonic tip (Sonicated_emulsion_Tw and Sonicated_emulsion_Pl). These emulsions were incorporated into pectin films.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Section II: Electrobiotechnology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.
Background: Parageobacillus thermoglucosidasius is a facultatively anaerobic thermophile that is able to produce hydrogen (H) gas from the oxidation of carbon monoxide through the water-gas shift reaction when grown under anaerobic conditions. The water-gas shift (WGS) reaction is driven by a carbon monoxide dehydrogenase-hydrogenase enzyme complex. Previous experiments exploring hydrogenogenesis with P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!