Biomolecular condensates formed via phase separation of proteins and nucleic acids are thought to be associated with a wide range of cellular functions and dysfunctions. We dissect critical molecular events associated with phase separation of an intrinsically disordered prion-like low-complexity domain of Fused in Sarcoma by performing single-molecule studies permitting us to access the wealth of molecular information that is skewed in conventional ensemble experiments. Our single-molecule FRET experiments reveal the coexistence of two conformationally distinct subpopulations in the monomeric form. Single-droplet single-molecule FRET studies coupled with fluorescence correlation spectroscopy, picosecond time-resolved fluorescence anisotropy, and vibrational Raman spectroscopy indicate that structural unwinding switches intramolecular interactions into intermolecular contacts allowing the formation of a dynamic network within condensates. A disease-related mutation introduces enhanced structural plasticity engendering greater interchain interactions that can accelerate pathological aggregation. Our findings provide key mechanistic underpinnings of sequence-encoded dynamically-controlled structural unzipping resulting in biological phase separation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643395PMC
http://dx.doi.org/10.1038/s41467-023-43225-yDOI Listing

Publication Analysis

Top Keywords

phase separation
16
single-molecule fret
12
molecular events
8
low-complexity domain
8
single-molecule
4
fret unmasks
4
structural
4
unmasks structural
4
structural subpopulations
4
subpopulations crucial
4

Similar Publications

Lignin Reinforcement in Polybutylene Succinate Copolymers.

Polymers (Basel)

January 2025

Department of Forest and Fire Sciences, University of Idaho, Moscow, ID 83844-1132, USA.

This study investigated the valorization of industrial lignin for producing biodegradable polybutylene succinate (PBS)-lignin copolymers. PBS was blended with varying lignin contents (0-45 wt. %) and crosslinked/grafted using dicumyl peroxide (DCP).

View Article and Find Full Text PDF

Novel Ultrafiltration Polyethersulfone Membranes Blended with Carrageenan.

Polymers (Basel)

January 2025

Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar.

The development of ultrafiltration (UF) polymeric membranes with high flux and enhanced antifouling properties bridges a critical gap in the polymeric membrane fabrication research field. In the present work, the preparation of novel PES membranes incorporated with carrageenan (CAR), which is a natural polymer derived from edible red seaweed, is reported for the first time. The PES/CAR membranes were prepared by using the nonsolvent-induced phase separation (NIPS) method at 0.

View Article and Find Full Text PDF

The phase separation of high-density polyethylene (HDPE)-polypropylene (PP) blends was studied using atomic force microscopy in tapping mode to obtain height and phase images. The results are compared with those from scanning electron microscopy imaging and are connected to the thermomechanical properties of the blends, characterised through differential scanning calorimetry, dynamic mechanical analysis (DMA), and tensile testing. Pure PP, as well as 10:90 and 20:80 weight ratio HDPE-PP blends, showed a homogeneous morphology, but the 25:75 HDPE-PP blends exhibited a sub-micrometre droplet-matrix structure, and the 50:50 HDPE-PP blends displayed a more complex co-continuous nano/microphase-separated structure.

View Article and Find Full Text PDF

The separation of large polar constituents presents a substantial challenge in natural product research when employing column chromatography techniques, as the process is both complex and time-consuming. In this study, an acetonitrile/tetrahydrofuran/di-(2-ethylhexyl) phosphoric acid/aqueous saturated sodium chloride solvent system was developed and utilized for the countercurrent chromatography of polar constituents from L. seeds.

View Article and Find Full Text PDF

Tellurium, recognized as one of the technology-critical elements, should be considered as a xenobiotic. Its application, i.a.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!