Energetics (and Mechanical Determinants) of Sprint and Shuttle Running.

Int J Sports Med

Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy.

Published: May 2024

Unsteady locomotion (e. g., sprints and shuttle runs) requires additional metabolic (and mechanical) energy compared to running at constant speed. In addition, sprints or shuttle runs with relevant speed changes (e. g., with large accelerations and/or decelerations) are typically short in duration and, thus, anaerobic energy sources must be taken into account when computing energy expenditure. In sprint running there is an additional problem due to the objective difficulty in separating the acceleration phase from a (necessary and subsequent) deceleration phase.In this review the studies that report data of energy expenditure during sprints and shuttles (estimated or actually calculated) will be summarized and compared. Furthermore, the (mechanical) determinants of metabolic energy expenditure will be discussed, with a focus on the analogies with and differences from the energetics/mechanics of constant-speed linear running.

Download full-text PDF

Source
http://dx.doi.org/10.1055/a-2184-9007DOI Listing

Publication Analysis

Top Keywords

energy expenditure
12
mechanical determinants
8
sprints shuttle
8
shuttle runs
8
energy
5
energetics mechanical
4
determinants sprint
4
sprint shuttle
4
running
4
shuttle running
4

Similar Publications

Purpose: This study aimed to validate the accuracy of the Active Style Pro HJA-750C (ASP) in measuring metabolic equivalents (METs) during walking and reaching tasks in individuals with subacute stroke using a respiratory gas analyzer as a reference.

Methods: Twenty-three hospitalized patients with subacute stroke participated in this study. They performed sitting and standing reaching tasks, as well as walking while wearing a VO2 Master respiratory gas analyzer and ASP devices on both the paretic and non-paretic sides.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most prevalent and deadly malignancies worldwide. Recently, ferroptosis, a novel form of regulated cell death characterized by iron dependency and lipid peroxidation, has garnered significant attention from researchers. The mechanisms underlying ferroptosis, including intracellular iron levels, lipid peroxidation, and antioxidant system regulation, offer new insights into cancer treatment strategies.

View Article and Find Full Text PDF

Introduction: Osteosarcoma (OS), a prevalent metastatic cancer among young individuals, is associated with a grim prognosis. Long non-coding RNAs (lncRNAs), including C1QTNF1-AS1, are pivotal regulators of cancer cell proliferation and motility. As an oncogene, C1QTNF1-AS1 is implicated in various tumor types, such as colorectal, pancreatic, hepatocellular carcinomas, and OS.

View Article and Find Full Text PDF

Introduction: Treatment of type 2 diabetes (T2D) remains a significant challenge because of its multifactorial nature and complex metabolic pathways. There is growing interest in finding new therapeutic targets that could lead to safer and more effective treatment options. Takeda G protein-coupled receptor 5 (TGR5) is a promising antidiabetic target that plays a key role in metabolic regulation, especially in glucose homeostasis and energy expenditure.

View Article and Find Full Text PDF

Background: Uncoupling protein 2 (UCP2) is essential for maintaining redox homeostasis and regulating energy metabolism. Abnormal expression of UCP2 has been associated with various tumors, including leukemia. Genipin (GEN), a specific inhibitor of UCP2, has a long history of use in traditional Chinese medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!