Due to the high heat and chemical stability of aflatoxin B1 (AFB) with significant impacts on humans/animals and thus it needs to develop a practical and efficient approach for its removal. Herein, we fabricated a magnetic Pd-chitosan/glutaraldehyde/rice husk/hercynite (Pd@CRH-x) composite for efficient detoxification of AFB. The Pd@CRH-x was obtained by a simple wet-impregnation procedure of CRH complexes followed by pyrolysis. The results confirmed that the unique structure of Pd@CRH-400 effectively improves dispersity, and mass transfer subsequently enhancing removal efficiency in batch conditions. Results indicate 94.30 % of AFB was efficiently degraded by 0.1 mg mL Pd@CRH-400 with 4.0 mM HO at wide pH ranges (3.0-10) at 60 min with a decomposition rate constant of 0.0467 min. Besides, by comparing the quality factors of edible oil (i.e., acid value, peroxide value, iodine value, moisture, volatile matters, anisidine value, and fatty acid composition), it was confirmed that there was no obvious influence on the physicochemical indicators of edible oil after removal/storage process. Subsequently, the systematic kinetic study and AFB degradation mechanism were presented. This study provides a new strategy for the efficient construction of controllable and dispersed Pd-based catalysts using CRH-x as a spatial support for alleviating the risk of toxic pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.127897DOI Listing

Publication Analysis

Top Keywords

edible oil
12
activate hydrogen
4
hydrogen peroxide
4
peroxide facile
4
efficient
4
facile efficient
4
efficient removal
4
removal aflatoxin
4
aflatoxin magnetic
4
magnetic pd-chitosan/rice
4

Similar Publications

Lipophilic antioxidants in edible oils: Mechanisms, applications and interactions.

Food Res Int

January 2025

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China. Electronic address:

Essential fatty acids (EFAs) in edible oils are crucial for human nutrition. However, their high unsaturation renders edible oils susceptible to oxidation during storage and processing. The addition of lipophilic antioxidants is an effective strategy to inhibit oxidation and safeguard the nutritional integrity of edible oils.

View Article and Find Full Text PDF

Protein oxidation: The effect of different preservation methods or phenolic additives during chilled and frozen storage of meat/meat products.

Food Res Int

January 2025

Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Türkiye. Electronic address:

Lipid and protein oxidation have significant effects on the shelf-life and nutritional value of meat and meat products. While lipid oxidation has been extensively studied, it has been recognized that proteins are also susceptible to oxidation. However, the precise mechanisms of oxygen-induced amino acid and protein modifications in the food matrix remain unclear.

View Article and Find Full Text PDF

Oleaginous yeasts offer a promising sustainable alternative for producing edible lipids, potentially replacing animal and unsustainable plant fats and oils. In this study, we screened 11 oleaginous yeast species for their lipid profiles and identified Apiotrichum brassicae as the most promising candidate due to its versatility across different growth media. A.

View Article and Find Full Text PDF

Frying is one of the oldest cooking methods, widely used to prepare crispy and flavorful foods. However, a significant concern with fried foods is the high amount of oil absorption. The application of edible coatings is a common approach to reducing oil absorption in fried potatoes.

View Article and Find Full Text PDF

The development of safe, environmentally friendly, edible antimicrobial packaging films represents a promising alternative to conventional plastic packaging for reducing spoilage and extending the shelf life of fresh food. Here, we propose a novel strategy to construct edible β-CD-MOF/carvacrol@zein (BCCZ) composite films by intertwining β-CD-MOF loaded with the antimicrobial essential oil carvacrol, and zein. The resulting BCCZ films exhibit high humidity-triggered, long-lasting bactericidal efficacy, effective fruit preservation, and excellent biosafety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!