A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of Hypericin on Cultured Primary Normal Human Dermal Fibroblasts Under Increased Oxidative Stress. | LitMetric

Effects of Hypericin on Cultured Primary Normal Human Dermal Fibroblasts Under Increased Oxidative Stress.

Int J Low Extrem Wounds

Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece.

Published: November 2023

Introduction: Wound healing is a dynamic process that begins with inflammation, proliferation, and cell migration of a variety of fibroblast cells. As a result, identifying possible compounds that may improve fibroblast cell wound healing capacity is crucial. Hypericin is a natural quinine that has been reported to possess a wide range of pharmacological profiles, including antioxidant and anti-inflammatory, activities. Herein we examined for the first time the effect of hypericin on normal human dermal fibroblasts (NHDFs) under oxidative stress.

Methods: NHDF were exposed to different concentrations of hypericin (0-20 μg/mL) for 24 h. For the oxidative stress evaluation, HO was used as a stressor factor. Cell viability and proliferation levels were evaluated. Immunohistochemistry and flow cytometry were performed to assess cell apoptosis levels and with confocal microscopy we identified the mitochondrial superoxide production under oxidative stress and after the treatment with hypericin. Scratch assay was performed under oxidative stress to evaluate the efficacy of hypericin in wound closure. To gain an insight into the molecular mechanisms of hypericin bioactivity, we analyzed the relative expression levels of genes involved in oxidative response and in wound healing process.

Results: We found that the exposure of NHDF to hypericin under oxidative stress resulted in an increase in cell viability and ATP levels. We found a decrease in apoptosis and mitochondrial superoxide levels after treatment with hypericin. Moreover, treatment with hypericin reduced wound area and promoted wound closure. The levels of selected genes showed that hypericin upregulated the levels of antioxidants genes. Moreover, treatment with hypericin in wound under oxidative stress downregulated the levels of proinflammatory cytokines, and metalloproteinases; and upregulated transcription factors and extracellular matrix genes.

Conclusion: These findings indicated that hypericin possesses significant in vitro antioxidant activity on NHDF and provide new insights into its potential beneficial role in the management of diabetic ulcers.

Download full-text PDF

Source
http://dx.doi.org/10.1177/15347346231212332DOI Listing

Publication Analysis

Top Keywords

oxidative stress
24
treatment hypericin
16
wound healing
12
hypericin
12
normal human
8
human dermal
8
dermal fibroblasts
8
oxidative
8
cell viability
8
levels
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!