Electrochemically mediated phosphorus and energy recovery from digested effluent.

J Environ Manage

School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China. Electronic address:

Published: January 2024

The growing global concern over the high phosphorus concentration in discharged wastewaters has driven the demand for exploring the means to recover it from wastewater. We previously demonstrated the possibility of phosphorus recovery by iron-air fuel cells from digested effluent. The present study focused on further optimizing the performance of the fuel cell by adjusting the wastewater properties (initial pH) and device parameters (anode/cathode area ratio, electrode spacing). Under neutral or slightly alkaline conditions, the HCO ions accelerated the formation of iron anode passivation layer, resulting in a decreased phosphate removal efficiency and vivianite yield. Additionally, the occurrence of oxygen crossover with small electrode spacing and anode/cathode area ratio significantly influenced the efficiency of fuel cells in terms of phosphate removal, vivianite production, and electricity generation. The results showed that an acidic pH (5.78), an adequate anode/cathode area ratio (1.3), and an appropriate electrode spacing (5 cm) were prone to increase vivianite yield. Furthermore, the fuel cell achieved the highest electric energy output with an initial pH of 5.78, an anode/cathode area ratio of 0.4, and an electrode spacing of 7.5 cm. As far as operational cost was concerned, the iron-air fuel cell system exhibited a potential cost-saving advantage of about 65.6% compared to the traditional electrochemical crystallization system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.119511DOI Listing

Publication Analysis

Top Keywords

anode/cathode area
16
area ratio
16
electrode spacing
16
fuel cell
12
digested effluent
8
iron-air fuel
8
fuel cells
8
ratio electrode
8
phosphate removal
8
vivianite yield
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!