Human skin is stably colonized by a distinct microbiota that functions together with epidermal cells to maintain a protective physical barrier. , a prominent genus of the skin microbiota, participates in colonization resistance, tissue repair, and host immune regulation in strain-specific manners. To unlock the potential of engineering skin microbial communities, we aim to characterize the diversity of this genus within the context of the skin environment. We reanalyzed an extant 16S rRNA amplicon dataset obtained from distinct body sites of healthy volunteers, providing a detailed biogeographic depiction of staphylococcal species that colonize our skin. , and were the most abundant staphylococcal species present in all volunteers and were detected at all body sites. Pan-genome analysis of isolates from these three species revealed that the genus-core was dominated by central metabolism genes. Species-restricted-core genes encoded known host colonization functions. The majority (~68%) of genes were detected only in a fraction of isolate genomes, underscoring the immense strain-specific gene diversity. Conspecific genomes grouped into phylogenetic clades, exhibiting body site preference. Each clade was enriched for distinct gene sets that are potentially involved in site tropism. Finally, we conducted gene expression studies of select isolates showing variable growth phenotypes in skin-like medium. In vitro expression revealed extensive intra- and inter-species gene expression variation, substantially expanding the functional diversification within each species. Our study provides an important resource for future ecological and translational studies to examine the role of shared and strain-specific staphylococcal genes within the skin environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666031 | PMC |
http://dx.doi.org/10.1073/pnas.2310585120 | DOI Listing |
PLoS One
January 2025
Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America.
The Notch intracellular domain (NICD) regulates gene expression during development and homeostasis in a transcription factor complex that binds DNA either as monomer, or cooperatively as dimers. Mice expressing Notch dimerization-deficient (NDD) alleles of Notch1 and Notch2 have defects in multiple tissues that are sensitized to environmental insults. Here, we report that cardiac phenotypes and DSS (Dextran Sodium Sulfate) sensitivity in NDD mice can be ameliorated by housing mice under hypo-allergenic conditions (food/bedding).
View Article and Find Full Text PDFMicrob Ecol
January 2025
Conservation Genomics Research Unit and Animal, Environmental and Antique DNA Platform, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy.
With amphibians still holding the record as the most threatened class of terrestrial vertebrates, their skin microbiota has been shown to play a relevant role in their survival in a fast-changing world. Yet little is known about how abiotic factors associated with different aquatic habitats impact these skin microorganisms. Here we chose the yellow-bellied toad (Bombina variegata), a small anuran that colonizes a wide range of wetland habitats, to investigate how the diversity and composition of both its bacterial and fungal skin communities vary across different habitats and with water characteristics (temperature, pH, and dissolved oxygen) of these habitats.
View Article and Find Full Text PDFVet Sci
December 2024
Interactions Cells Environment, 2016. A104, VetAgro Sup, Dermatology Department, 69280 Marcy L'étoile, France.
Evaluation of skin inflammation biomarkers in canine atopic dermatitis (AD) currently requires skin biopsies. Tape stripping has been shown to be a reliable technique to study biomarkers in the stratum corneum (SC) in humans. The aim of this study was to assess the immune response and identify biomarkers in the SC of dogs with canine AD using D-squame as a minimally invasive technique.
View Article and Find Full Text PDFTomography
January 2025
Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy.
Background/objectives: Mummy studies allow to reconstruct the characteristic of a population in a specific spatiotemporal context, in terms of living conditions, pathologies and death. Radiology represents an efficient diagnostic technique able to establish the preservation state of mummified organs and to estimate the patient's pathological conditions. However, the radiological approach shows some limitations.
View Article and Find Full Text PDFMar Drugs
December 2024
Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, University of West Attica, 28 Agios Spyridonos Street, GR-12243 Egaleo, Greece.
It is well established that marine organisms consist of a great variety of active compounds that appear exclusively in the marine environment while having the ability to be vastly reproduced, irrespective of the existing conditions. As a result, marine organisms can be used in many scientific fields, including the ones of pharmaceutics, nutrition, and cosmetic science. As for the latter, marine ingredients have been successfully included in cosmetic formulations for many decades, providing numerous benefits for the skin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!