Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Genetic studies in mice and human cancers established BCL11B as a haploinsufficient tumor suppressor gene. Paradoxically, BCL11B is overexpressed in some human cancers where its knockdown is synthetic lethal. We identified the BCL11B protein in a proximity-dependent biotinylation screen performed with the DNA glycosylase NTHL1. In vitro DNA repair assays demonstrated that both BCL11B and a small recombinant BCL11B213-560 protein lacking transcription regulation potential can stimulate the enzymatic activities of two base excision repair (BER) enzymes: NTHL1 and Pol β. In cells, BCL11B is rapidly recruited to sites of DNA damage caused by laser microirradiation. BCL11B knockdown delays, whereas ectopic expression of BCL11B213-560 accelerates, the repair of oxidative DNA damage. Inactivation of one BCL11B allele in TK6 lymphoblastoid cells causes an increase in spontaneous and radiation-induced mutation rates. In turn, ectopic expression of BCL11B213-560 cooperates with the RAS oncogene in cell transformation by reducing DNA damage and cellular senescence. These findings indicate that BCL11B functions as a BER accessory factor, safeguarding normal cells from acquiring mutations. Paradoxically, it also enables the survival of cancer cells that would otherwise undergo senescence or apoptosis due to oxidative DNA damage resulting from the elevated production of reactive oxygen species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10783527 | PMC |
http://dx.doi.org/10.1093/nar/gkad1037 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!