Proper seed development is essential for achieving grain production, successful seed germination, and seedling establishment in maize (Zea mays). In the past few decades, pentatricopeptide repeat (PPR) proteins have been proven to play an essential role in regulating the development of maize kernels through posttranscriptional RNA modification of mitochondrial genes. However, the underlying mechanisms remain largely unknown. Here, we characterized a mutant of DEFECTIVE KERNEL 56 (DEK56) with defective kernels that exhibited arrested development of both the embryo and endosperm. Accordingly, we isolated DEK56 through a map-based cloning strategy and found that it encoded an E subgroup PPR protein located in the mitochondria. Dysfunction of DEK56 resulted in altered cytidine (C)-to-uridine (U) editing efficiency at 48 editing sites across 21 mitochondrial transcripts. Notably, the editing efficiency of the maturase-related (matR)-1124 site was substantially reduced or abolished in the dek56 mutant. Furthermore, we found that the splicing efficiency of NADH dehydrogenase subunit 4 (nad4) Introns 1 and 3 was substantially reduced in dek56 kernels, which might be a consequence of the defective MatR function. Through a protein-protein interaction test, we hypothesized that DEK56 carries out its function by recruiting the PPR-DYW protein PPR motif, coiled-coil, and DYW domain-containing protein 1 (PCW1). This interaction is facilitated by Multiple Organellar RNA Editing Factors (ZmMORFs) and Glutamine-Rich Protein 23 (ZmGRP23). Based on these findings, we developed a working model of PPR-mediated mitochondrial processing that plays an essential role in the development of maize kernels. The present study will further broaden our understanding of PPR-mediated seed development and provide a theoretical basis for maize improvement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/plphys/kiad598 | DOI Listing |
Tree Physiol
January 2025
Laboratoire de Biologie du Développement, UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, F-75005 Paris, France.
Norway maple and sycamore belong to the Acer genus and produce desiccation-tolerant and desiccation-sensitive seeds, respectively. We investigated the seed germination process at the imbibed and germinated stages using metabolomic and proteomic approaches to determine why sycamore seeds germinate earlier and are more successful at establishing seedlings than Norway maple seeds under controlled conditions. Embryonic axes and embryonic axes with protruded radicles were analyzed at the imbibed and germinated stages, respectively.
View Article and Find Full Text PDFPLoS One
January 2025
Commercialization Division, CSIR-Soil Research Institute, Kumasi, Ghana.
Addressing global food security demands urgent improvement in agricultural productivity, particularly in developing economies where market imperfections are perverse and resource constraints prevail. While microcredit is widely acknowledged as a tool for economic empowerment, its role in facilitating agricultural technology adoption and improving agricultural incomes remains underexplored. This study examines the synergistic effects of microcredit access and agricultural technology adoption on the incomes of maize farmers in Kenya.
View Article and Find Full Text PDFMol Cell Biochem
January 2025
Neurodegenerative Diseases Laboratory, Center for Biomedicine, Universidad Mayor, Avenida Alemania 0281, 4780000, Temuco, La Araucanía, Chile.
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by tremor, rigidity, and bradykinesia, beginning with early loss of dopaminergic neurons in the ventrolateral substantia nigra and advancing to broader neurodegeneration in the midbrain. The clinical heterogeneity of PD and the lack of specific diagnostic tests present significant challenges, highlighting the need for reliable biomarkers for early diagnosis. Alpha-synuclein (α-Syn), a protein aggregating into Lewy bodies and neurites in PD patients, has emerged as a key biomarker due to its central role in PD pathophysiology and potential to reflect pathological processes.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
Lodging reduces grain yield and quality in cereal crops. Lodging resistance is affected by the strength of the culm, which is influenced by the culm diameter, culm wall thickness, and cell wall composition. To explore the genetic architecture of culm diameter in rice (Oryza sativa), we conducted a genome-wide association study (GWAS).
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga 29071, Spain.
Cyclic lipopeptides (CLPs) are potent secondary metabolites with diverse biological functions. strains primarily produce CLPs of three key families, namely, iturins, fengycins, and surfactins, each comprising structural variants characterized by a cyclic peptide linked to a fatty acid chain. Despite extensive research on CLPs, the individual roles of these analogues and their proportion in driving biological activity have remained largely overlooked.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!