Nile Blue (NB) is a red-emissive dye that is well-known for imaging and staining applications. In this work, we describe the interaction of NB with various types of G-quadruplexes belonging to different topologies, molecularities, and conformations. Using spectroscopic techniques, we have determined the preferential binding of NB to G-quadruplex and the other aspects of its binding. Concentration- and temperature-dependent studies showed that NB exists in a dynamic equilibrium between monomeric and H-aggregated states, which could be modulated by the addition of external agents such as anionic surfactants. NB displayed differential self-assembly with different types of G-quadruplex and duplex DNAs modulating its dynamic equilibrium between the monomeric and H-aggregated states. Fluorescence-based displacement studies revealed a 1:1 binding stoichiometry upon interaction with c- G-quadruplex and an association constant of = 6.7 × 10 M. Circular dichroism studies indicated that NB does not cause changes in the overall conformation of either G-quadruplexes or duplexes; however, it does indicate nucleic acid-dependent self-assembly at higher concentrations. Heat capacity measurement showed a more negative change when compared to that in DNA duplex, indicating more burial of the polar surface area by NB to the G-quadruplex host.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.3c05084DOI Listing

Publication Analysis

Top Keywords

nile blue
8
blue red-emissive
8
differential self-assembly
8
dynamic equilibrium
8
equilibrium monomeric
8
monomeric h-aggregated
8
h-aggregated states
8
red-emissive fluorescent
4
fluorescent dye
4
dye displays
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!