Next-generation medical and consumer electrical devices require soft, flexible materials. Piezoelectric materials, capable of converting mechanical stress into electrical energy, are of interest across various fields. Chiral nanostructures, with inherent chirality, have emerged as potential piezoelectric materials. Peptide-based materials, known for self-assembly and stimuli responsiveness, hold promise for the utilization of chiral nanostructures. When combined with luminescent chromophores, peptides can generate aggregation-induced chiroptical effects like Circularly Polarized Luminescence (CPL) and Circular Dichroism (CD). In this study, a chiral organogel, L,L-1 is synthesized, and its self-assembly, mechanical properties, and chiroptical features are examined. The organogel exhibits thermo-reversible and thixotropic behavior, forming fibrillar networks and 2D-sheets upon cooling. CD spectroscopy reveals aggregation-induced chirality on pyrene chromophore, resulting in CPL with g values of 3.0 (± 0.2) × 10 and 3.1 (± 0.2) × 10 for L,L-1 and D,D-1, respectively. Notably, the 2D-sheets exhibit an enhanced piezoelectric response (d ≈76.0 pm V) compared to the fibrillar network (d ≈64.1 pm V). Introducing an electron-deficient molecule into the solution forms a Charge-transfer (CT) complex, modulating the piezoelectric response to d ≈52.44 pm V. This study offers a promising approach to optoelectronics design, presenting a chiral system with both CPL and piezoelectric responses, opening new possibilities for innovative applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202308104DOI Listing

Publication Analysis

Top Keywords

chiral nanostructures
12
circularly polarized
8
polarized luminescence
8
luminescence cpl
8
cpl piezoelectric
8
piezoelectric responses
8
piezoelectric materials
8
piezoelectric response
8
piezoelectric
6
chiral
5

Similar Publications

Resolving Artifacts and Improving the Detection Limit in Circular Differential Scattering Measurement of Chiral and Achiral Gold Nanorods.

ACS Nano

January 2025

Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China.

Circular differential scattering (CDS) spectroscopy has been developed as a powerful method for the characterization of the optical activity of individual plasmonic nanostructures and their complexes with chiral molecules. However, standard measurement setups often result in artifacts that have long raised concerns on the interpretation of spectral data. In fact, the detection limit of CDS setups is constrained by the high level of artifacts, to ±10%.

View Article and Find Full Text PDF

Shell Dependence of Highly Tunable Circular Dichroism in Chiral Hybrid Plasmonic Nanomaterials for Chiroptical Applications.

ACS Nano

January 2025

College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China.

Chiral plasmonic nanomaterials with fascinating physical and chemical properties show emerging chirality-dependent applications in photonics, catalysis, and sensing. The capability to precisely manipulate the plasmonic chirality in a broad spectral range plays a crucial role in enabling the applications of chiral nanomaterials in diverse and complex scenarios; however, it remains a challenge yet to be addressed. Here we demonstrate a strategy to significantly enhance the tunability of circular dichroism (CD) spectra of chiral nanomaterials by constructing core-shell hybrid metal-semiconductor structures with tailored shells.

View Article and Find Full Text PDF

The development of new synthetic strategies to introduce and control chirality in inorganic nanostructures has been highly stimulated by the broad spectrum of potential applications of these exiting nanomaterials. Molybdenum disulfide is among the most investigated transition metal dichalcogenides due to its promising properties for applications that spread from optoelectronic to spintronic. Herein, we report a new two-step approach for the production of chiroptically active semiconductor 2H MoS2 nanosheets with chiral morphology based on the manipulation of their crystallographic structure.

View Article and Find Full Text PDF

Chiral Nanostructures from Artificial Helical Polymers: Recent Advances in Synthesis, Regulation, and Functions.

ACS Nano

January 2025

School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China.

Helical structures such as right-handed double helix for DNA and left-handed α-helix for proteins in biological systems are inherently chiral. Importantly, chirality at the nanoscopic level plays a vital role in their macroscopic chiral functionalities. In order to mimic the structures and functions of natural chiral nanoarchitectures, a variety of chiral nanostructures obtained from artificial helical polymers are prepared, which can be directly observed by atomic force microscopy (AFM), scanning tunneling microscopy (STM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Developing chiral plasmonic nanostructures represents a significant scientific challenge due to their multidisciplinary potential. Observations have revealed that the dichroic behavior of metal plasmons changes when chiral molecules are present in the system, offering promising applications in various fields such as nano-optics, asymmetric catalysis, polarization-sensitive photochemistry and molecular detection. In this study, we explored the synthesis of plasmonic gold nanoparticles and the role of cysteine in their chiroplasmonic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!