A non-laborious process for the fabrication of silver and magnesium dual doped zinc oxide nanoparticles (Ag/Mg-ZnO NP) is described. The wurtzite ZnO nano-structures and the dual doped NP were analyzed by PXRD. SEM data showed the hexagonal morphology of our product, while the gathered anti-bacterial outcomes towards Streptococcus mutans bacteria through micro-dilution technic affirmed the enhanced performance of doped NP compared to the native ones. Furthermore, we gauged the toxic impacts of synthesized pure and Ag/Mg-ZnO NP against a breast cancer (MDA-MB-231) cell line through an MTT trial, which highlighted the superiority of the doped when compared to the native nanoparticles. In light of these comparisons, the applicability of Ag/Mg-ZnO NP in dental and medical science is proposed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924039PMC
http://dx.doi.org/10.1002/open.202300093DOI Listing

Publication Analysis

Top Keywords

dual doped
8
doped compared
8
compared native
8
study cytotoxic
4
cytotoxic antibacterial
4
antibacterial activity
4
activity ag-
4
ag- mg-dual-doped
4
mg-dual-doped zno
4
zno nanoparticles
4

Similar Publications

Copper-cobalt diatomic bifunctional oxygen electrocatalysts based on three-dimensional porous nitrogen-doped carbon frameworks for high-performance zinc-air batteries.

J Colloid Interface Sci

December 2024

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, PR China; Engineering Research Center of Ministry of Education for Intelligent Rehabilitation Device and Detection Technology, Hebei University of Technology, Tianjin 300401, PR China; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, Hebei University of Technology, Tianjin 300401, PR China; School of Mechanical Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin 300401, PR China. Electronic address:

Transition-metal-loaded carbon-based electrocatalysts are promising alternatives to conventional precious metal electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in high-performance zinc-air batteries. However, efficiently doping transition-metal single atoms onto carbon-based frameworks is a significant challenge. Herein, an improved template-sacrificing method combining a two-step carbonization process is proposed to fabricate Cu/Co diatomic sites coanchored on a three-dimensional nitrogen-doped carbon-based framework.

View Article and Find Full Text PDF

In this work, we present an experimental approach for monitoring the temperature of submicrometric, real-time operating electrical circuits using luminescence thermometry. For this purpose, we utilized lanthanide-doped up-converting nanocrystals as nanoscale temperature probes, which, combined with a highly sensitive confocal photoluminescence microscope, enabled temperature monitoring with spatial resolution limited only by the diffraction of light. To validate our concept, we constructed a simple model of an electrical microcircuit based on a single silver nanowire with a diameter of approximately 100 nm and a length of about 50 µm, whose temperature increase was induced by electric current flow.

View Article and Find Full Text PDF

The electrochemical reduction reaction (RR) of CO to high value multicarbon products is highly desirable for carbon utilization. Dual transition metal atoms dispersed by N-doped graphene are able to be highly efficient catalysts for this process due to the synergy of the bimetallic sites for C-C coupling. In this work, we screened homonuclear dual-atom catalysts dispersed by N-doped graphene to investigate the potential in CO reduction to C products by employing density functional theory calculations.

View Article and Find Full Text PDF

Smart and advanced nanocomposites of rGO-based Ni-doped CoO/TiO for next-level photocatalysis and gas sensing application.

Environ Sci Pollut Res Int

December 2024

Advanced Materials Research Laboratory, Department of Physics, Dr. Babasaheb Ambedkar, Marathwada University, Chhatrapati Sambhajinagar, 431004, M.S, India.

The rGO-based 5% Ni-doped CoO/TiO (GNCT) p-n heterojunction nanocomposite was synthesized using hydrothermal method. The resulting nanocomposite's morphology, structure, surface area, elemental composition, electrical and optical properties were thoroughly examined using a variety of techniques. The GNCT nanomaterial achieved an impressive 99.

View Article and Find Full Text PDF

Dual action of non-metal doped CN and TiCT heterojunction enhances the catalytic activity of electrochemical simultaneous oxidation of hydrogen peroxide and peroxymonosulfate:A theoretical study.

Environ Res

December 2024

Environment Research Institute, Shandong University, Qingdao 266237, P. R. China; School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada. Electronic address:

Electrochemical advanced oxidation processes (EAOPs) are energy-efficient methods for generating activated radicals like HO and SO, which enable the degradation of difficult-to-mineralize chlorinated organic compounds. This study explored the catalytic activity and reaction mechanism of EAOPs under a dual strategy involving non-metal doped CN (X@CN (X = O, F, Si)) and a heterostructured build(X@CN/TiCT) using first principles calculation. The non-metal doping and the heterojunction construction can make HO and PMS spontaneously adsorb (E< 0), with negative Gibbs free energy for their oxidation to HO and SO, significantly enhancing catalytic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!