A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural Isomers: Small Change with Big Difference in Anion Storage. | LitMetric

Structural Isomers: Small Change with Big Difference in Anion Storage.

Nanomicro Lett

School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.

Published: November 2023

Organic electrode materials are promising for batteries. However, the reported organic electrodes are often facing the challenges of low specific capacity, low voltage, poor rate capability and vague charge storage mechanisms, etc. Isomers are good platform to investigate the charge storage mechanisms and enhance the performance of batteries, which, however, have not been focused in batteries. Herein, two isomers are reported for batteries. As a result, the isomer tetrathiafulvalene (TTF) could store two monovalent anions reversibly, deriving an average discharge voltage of 1.05 V and a specific capacity of 220 mAh g at a current density of 2 C. On the other hand, the other isomer tetrathianaphthalene could only reversibly store one monovalent anion and upon further oxidation, it would undergo an irreversible solid-state molecular rearrangement to TTF. The molecular rearrangement was confirmed by electrochemical performances, X-ray diffraction patterns, nuclear magnetic resonance spectra, and H detected heteronuclear multiple bond correlation spectra. These results suggested the small structural change could lead to a big difference in anion storage, and we hope this work will stimulate more attention to the structural design for boosting the performance of organic batteries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643786PMC
http://dx.doi.org/10.1007/s40820-023-01239-7DOI Listing

Publication Analysis

Top Keywords

big difference
8
difference anion
8
anion storage
8
specific capacity
8
charge storage
8
storage mechanisms
8
store monovalent
8
molecular rearrangement
8
batteries
5
structural isomers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!