Solution shearing, a meniscus-guided coating process, can create large-area metal-organic framework (MOF) thin films rapidly, which can lead to the formation of uniform membranes for separations or thin films for sensing and catalysis applications. Although previous work has shown that solution shearing can render MOF thin films, examples have been limited to a few prototypical systems, such as HKUST-1, Cu-HHTP, and UiO-66. Here, we expand on the applicability of solution shearing by making thin films of NU-901, a zirconium-based MOF. We study how the NU-901 thin film properties (i.e., crystallinity, surface coverage, and thickness) can be controlled as a function of substrate temperature and linker concentration. High fractional surface coverage of small-area (∼1 cm) NU-901 thin films (0.88 ± 0.06) is achieved on a glass substrate for all conditions after one blade pass, while a low to moderate fractional surface coverage (0.73 ± 0.18) is obtained for large-area (∼5 cm) NU-901 thin films. The crystallinity of NU-901 crystals increases with temperature and decreases with linker concentration. On the other hand, the adjusted thickness of NU-901 thin films increases with both increasing temperature and linker concentration. We also extend the solution shearing technique to synthesize MOF-525 thin films on a transparent conductive oxide that are useful for electrocatalysis. We show that Fe-metalated MOF-525 films can reduce CO to CO, which has implications for CO capture and utilization. The demonstration of thin film formation of NU-901 and MOF-525 using solution shearing on a wide range of substrates will be highly useful for implementing these MOFs in sensing and catalytic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c12011 | DOI Listing |
Mater Horiz
December 2024
Walter Schottky Institute, Technical University of Munich, 85748 Garching, Germany.
Semiconducting ternary nitrides are a promising class of materials that have received increasing attention in recent years, but often show high free electron concentrations due to the low defect formation energies of nitrogen vacancies and substitutional oxygen, leading to degenerate n-type doping. To achieve non-degenerate behavior, we now investigate a family of amorphous calcium-zinc nitride (Ca-Zn-N) thin films. By adjusting the metal cation ratios, we demonstrate band gap tunability between 1.
View Article and Find Full Text PDFCureus
November 2024
Internal Medicine, Portsmouth Hospitals University, Portsmouth, GBR.
Malaria remains a significant global health challenge, particularly in endemic regions of Africa, with being the most virulent species. This case report details the presentation of a 24-year-old Caucasian woman who collapsed at a train station in the United Kingdom after experiencing a week of fever, malaise, abdominal pain, and gastrointestinal symptoms. At emergency care, she was initially resuscitated with intravenous fluids and antipyretics.
View Article and Find Full Text PDFPharm Nanotechnol
December 2024
Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Department of Pharmaceutics, Moradabad- 244001. India.
Periodontitis (PD) is a pathological condition that results in chronic swelling in the tissue around a tooth, which results in advanced periodontal structural injury to the encircling soft and hard tissues with eventual exfoliation and movement of teeth. It affects around 60% of the world's population, indicating a relatively high prevalence. Therefore, the discovery of efficient therapeutic interventions for dental disorders is a primary goal of the health sciences, and periodontitis is a significant public health problem.
View Article and Find Full Text PDFNature
December 2024
Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
Multijunction photovoltaics (PVs) are gaining prominence owing to their superior capability of achieving power conversion efficiencies (PCEs) beyond the radiative limit of single-junction cells, where improving narrow bandgap tin-lead perovskites is critical for thin-film devices. With a focus on understanding the chemistry of tin-lead perovskite precursor solutions, we herein find that Sn(II) species dominate interactions with precursors and additives and uncover the exclusive role of carboxylic acid in regulating solution colloidal properties and film crystallisation, and ammonium in improving film optoelectronic properties. Materials that combine these two function groups, amino acid salts, considerably improve the semiconducting quality and homogeneity of perovskite films, surpassing the effect of the individual functional groups when introduced as part of separate molecules.
View Article and Find Full Text PDFNanotechnology
December 2024
Instituto de Nanociencia y Nanotecnología (CONICET-CNEA), Gral. Paz 1499 - San Martín - Argentina, BUENOS AIRES, 1650, ARGENTINA.
Our study demonstrates that strong cationic segregation can occur in amorphous complex oxide memristors during electrical operation. With the help of analytic techniques, we observed that switching the electrical stimulation from voltage to current significantly prevents structural changes and cation segregation at the nanoscale, improving also the device cycle-to-cycle variability. These findings could contribute to the design of more reliable oxide-based memristors and underscore the crucial effect that has the type of electrical stimulation applied to the devices on their integrity and reliability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!