Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fibroblasts are the main producers of extracellular matrix (ECM) responsible for ECM maintenance and repair, a process often disrupted in chronic lung diseases. The accompanying mechanical changes adversely affect resident cells and overall lung function. Numerous models have been used to elucidate fibroblast behavior that are now evolving toward complex three-dimensional (3-D) models incorporating ECM, aiming to replicate the cells' native environment. Little is known about the cellular changes that occur when moving from two-dimensional (2-D) to 3-D cell culture. This study compared the gene expression profiles of primary human lung fibroblasts from seven subjects with normal lung function, that were cultured for 24 h on 2-D collagen I-coated tissue culture plastic and in 3-D collagen I hydrogels, which are commonly used to mimic ECM in various models, from contraction assays to intricate organ-on-a-chip models. Comparing 3-D with 2-D cell culture, 6,771 differentially expressed genes (2,896 up, 3,875 down) were found; enriched gene sets within the downregulated genes, identified through Gene Set Enrichment Analysis and Ingenuity Pathway Analysis, were involved in the initiation of DNA replication which implied downregulation of fibroblast proliferation in 3-D. Observation of cells for 72 h in 2-D and 3-D environments confirmed the reduced progression through the cell cycle in 3-D. A focused analysis, examining the Hippo pathway and ECM-associated genes, showed differential patterns of gene expression in the 3-D versus 2-D culture. Altogether, the transcriptional response of fibroblasts cultured in 3-D indicated inhibition of proliferation, and alterations in Hippo and ECM pathways indicating a complete switch from proliferation to ECM remodeling. With the introduction of complex three-dimensional (3-D) lung models, comes a need for understanding cellular behavior in these models. We compared gene expression profiles of human lung fibroblasts grown on two-dimensional (2-D) collagen I-coated surfaces with those in 3-D collagen I hydrogels. RNA sequencing and subsequent pathway analyses showed decreased proliferation, increased extracellular matrix (ECM) remodeling, and altered Hippo signaling and ECM deposition-related gene signatures. These findings highlight unique responses of fibroblasts in 3-D models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00374.2023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!