Twenty-one new coumarin Mannich base derivatives (11a-u) were synthesized, which exhibited antiproliferation activities in HepG2 (liver cancer), A549 (lung cancer), MCF-7 (breast cancer), and HT-29 (colon cancer). Most of the target compounds showed the most potent activity against HepG2 cells compared with other cancer cells, compound 11g showed the strongest antiproliferative activity (2.10 μM) against HepG2, even superior to the positive control drug 5-FU(5.49 μM). The nitric oxide (NO) release of all compounds in HepG2 cells was determined, of which compound 11g showed high levels of NO release (10.8 μM). Notably, the solubility of compound 11g increased 13-fold compared with the lead 8. The preliminary cytotoxicity studies suggest that 11g had little effect on LO2 cells(normal liver cells, >50 μM). The effect of compound 11g on the apoptosis of HepG2 cells was also studied, and the results showed that the induction effect of compound 11g on apoptosis is a concentration-dependent manner. Our results indicate that compound 11g might be a promising lead for further studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cbdd.14389 | DOI Listing |
Sci Rep
December 2024
Department of Internal Medicine, Istanbul Medeniyet University, Fahrettin Kerim Gokay Street, Kadikoy, 34722, Istanbul, Turkey.
Iron deficiency anemia (IDA) is prevalent among women of reproductive age. Treatment aims to replenish iron stores and normalize hemoglobin levels, with oral iron therapy being the preferred route in most cases. This study aimed to compare the efficacy and side effects of three common oral treatment regimens in premenopausal women with IDA.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague-Suchdol, Czech Republic.
Several Ranunculaceae species are used in folk medicine to eliminate pathologies associated with oxidative stress as well as parasitic infections; however, a number of studies confirming their pharmacological properties is limited. In this study, 19 ethanolic extracts obtained from 16 Ranunculaceae species were assayed for in vitro antioxidant, antiproliferative, and antiparasitic potential. The maximum antioxidant potential in both oxygen radical absorbance capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays was observed for extract [half-maximal inhibitory concentration (IC) 18.
View Article and Find Full Text PDFPeerJ
October 2024
College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.
Bioorg Med Chem Lett
December 2024
School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, China. Electronic address:
Histone deacetylases (HDACs) are validated drug targets for various therapeutic applications. A series of Tetrahydro-β-carboline-based hydroxamate derivatives, designed as HDAC inhibitors (HDACis), were synthesized. Compound 11g exhibited strong inhibitory activity against HDAC1 and the A549 cancer cell line.
View Article and Find Full Text PDFBioorg Chem
December 2024
Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden. Electronic address:
Leucine-rich pentatricopeptide repeat-containing protein (LRPPRC), signal transducer and activator of transcription 3 (STAT3), and cyclin-dependent kinase 1 (CDK1) are promising therapeutic targets for cancer treatment. However, there is a lack of effective inhibitors of LRPPRC, STAT3, and CDK1 in clinic. Our previous study has proved that 5,7,4'-Trimethoxyflavone (TMF) is a novel inhibitor of LRPPRC/STAT3/CDK1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!