Postoperative infection and subsequent device loss are serious complications in the use of titanium dental implants and plates for jawbone reconstruction. We have previously reported that NaOH-CaCl -thermal-ICl -treated titanium (NaCaThIo) has a nano-scale surface and exhibits antibacterial activity against Staphylococcus aureus. The present study examined the surface properties of mixed-acid treated and then iodine-treated titanium (MA-NaCaThIo), and evaluated oral antibacterial activity and cytotoxicity compared with the results obtained with NaCaThIo. MA-NaCaThIo formed a surface layer with a nano-scale network structure having microscale irregularities, and both the thickness of the surface layer (1.49 ± 0.16 μm) and the average surface roughness (0.35 ± 0.03 μm) were significantly higher than those of NaCaThIo. Furthermore, MA-NaCaThIo maintained high hydrophilicity with a contact angle of 7.5 ± 1.7° even after 4 weeks, as well as improved apatite formation, iodine ion release, and antibacterial activity against Prevotella intermedia compared to NaCaThIo. Cell culture test revealed that MA-NaCaThIo exhibited no cytotoxicity against MG-63 and Vero cells, while increased cell proliferation, ALP activity and mineralization of MG-63 compared to NaCaThIo. This treated titanium is expected to be useful for the development of next-generation titanium devices having both bone-bonding and antibacterial properties.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.37647DOI Listing

Publication Analysis

Top Keywords

antibacterial activity
16
compared nacathio
12
nacathio ma-nacathio
8
surface layer
8
titanium
6
antibacterial
5
activity
5
nacathio
5
surface
5
enhancement vitro
4

Similar Publications

A major risk to the poultry industry is antimicrobial resistance (AMR), specifically with regard to Mycoplasma gallisepticum (MG) infections. The sensitivity patterns of 100 MG isolates to biocides and antibiotics were examined in this study to clarify the interactions between antimicrobial agents and resistance mechanisms. The antimicrobial activity against MG was assessed using broth microdilution, and the results are shown as the minimum inhibitory concentration (MIC) for each strain, the MIC distribution (range), the MIC, and/or the MIC.

View Article and Find Full Text PDF

Embedment of Biosynthesised Silver Nanoparticles in PolyNIPAAm/Chitosan Hydrogel for Development of Proactive Smart Textiles.

Nanomaterials (Basel)

December 2024

Department of Textiles, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia.

A smart viscose fabric with temperature and pH responsiveness and proactive antibacterial and UV protection was developed. PNCS (poly-(N-isopropylakrylamide)/chitosan) hydrogel was used as the carrier of silver nanoparticles (Ag NPs), synthesised in an environmentally friendly manner using AgNO and a sumac leaf extract. PNCS hydrogel and Ag NPs were applied to the viscose fabric by either in situ synthesis of Ag NPs on the surface of viscose fibres previously modified with PNCS hydrogel, or by the direct immobilisation of Ag NPs by the dehydration/hydration of the PNCS hydrogel with the nanodispersion of Ag NPs in the sumac leaf extract and subsequent application to the viscose fibres.

View Article and Find Full Text PDF

Cytotoxic and antibacterial activity of naturally occurring agglutinin produced from the root of Poir.

Nat Prod Res

January 2025

Bioprocess Engineering Division, Smykon Biotech, Kanniyakumari, Tamilnadu, India.

Lectins are naturally occurring agglutinins which are produced more from plants sources compared to animal sources. The present study aims to screen the potential applications of lectin isolated from the mangrove plant, Poir. This root agglutinin of showed highest HA titre with buffalo erythrocytes.

View Article and Find Full Text PDF

Lactams Exhibit Potent Antifungal Activity Against Monospecies and Multispecies Interkingdom Biofilms on a Novel Hydrogel Skin Model.

APMIS

January 2025

Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK.

Infections of intact and damaged skin barriers and keratin are frequently associated with complex biofilm communities containing bacteria and fungi, yet there are limited options for successful management. This study intended to focus on the utility of some novel proprietary lactam molecules, quorum sensing (QS)-derived halogenated furanones, which act to block the QS pathway, against key fungal pathogens of the skin (Candida albicans, Malassezia furfur and Microsporum gypseum). Moreover, we aimed to assess how these actives performed against complex interkingdom biofilms in a clinically relevant model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!