A critical discussion on the relationship between E3 ubiquitin ligases, protein degradation, and skeletal muscle wasting: it's not that simple.

Am J Physiol Cell Physiol

Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States.

Published: December 2023

AI Article Synopsis

  • Ubiquitination is a key process where ubiquitin attaches to proteins, involving the activities of E1, E2, and E3 enzymes, and is crucial for determining protein fates.
  • The E3 ubiquitin ligases MuRF1 and MAFbx/Atrogin-1 are often studied as indicators of protein degradation in muscle atrophy, but recent evidence suggests that protein ubiquitination doesn't always equal degradation.
  • The article highlights challenges in using E3 ligases as markers for degradation rates in skeletal muscle and encourages further research to better understand the mechanisms of protein function and degradation in muscle atrophy.

Article Abstract

Ubiquitination is an important post-translational modification (PTM) for protein substrates, whereby ubiquitin is added to proteins through the coordinated activity of activating (E1), ubiquitin-conjugating (E2), and ubiquitin ligase (E3) enzymes. The E3s provide key functions in the recognition of specific protein substrates to be ubiquitinated and aid in determining their proteolytic or nonproteolytic fates, which has led to their study as indicators of altered cellular processes. MuRF1 and MAFbx/Atrogin-1 were two of the first E3 ubiquitin ligases identified as being upregulated in a range of different skeletal muscle atrophy models. Since their discovery, the expression of these E3 ubiquitin ligases has often been studied as a surrogate measure of changes to bulk protein degradation rates. However, emerging evidence has highlighted the dynamic and complex regulation of the ubiquitin proteasome system (UPS) in skeletal muscle and demonstrated that protein ubiquitination is not necessarily equivalent to protein degradation. These observations highlight the potential challenges of quantifying E3 ubiquitin ligases as markers of protein degradation rates or ubiquitin proteasome system (UPS) activation. This perspective examines the usefulness of monitoring E3 ubiquitin ligases for determining specific or bulk protein degradation rates in the settings of skeletal muscle atrophy. Specific questions that remain unanswered within the skeletal muscle atrophy field are also identified, to encourage the pursuit of new research that will be critical in moving forward our understanding of the molecular mechanisms that govern protein function and degradation in muscle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861180PMC
http://dx.doi.org/10.1152/ajpcell.00457.2023DOI Listing

Publication Analysis

Top Keywords

ubiquitin ligases
20
protein degradation
20
skeletal muscle
20
muscle atrophy
12
degradation rates
12
ubiquitin
9
protein
9
protein substrates
8
bulk protein
8
ubiquitin proteasome
8

Similar Publications

Apple MIEL1/ABI5-MAX2 regulatory module links strigolactone and abscisic acid signals.

J Integr Plant Biol

January 2025

State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China.

In apple (Malus domestica), the abscisic acid (ABA)-responsive factor ABA INSENSITIVE5 directly activates MORE AXILLARY GROWTH2 (MdMAX2), an important strigolactone signaling component; an abscisic acid-restricted E3 ubiquitin ligase modulates MdMAX2 turnover, thus linking strigolactone and abscisic acid signaling.

View Article and Find Full Text PDF

Rice E3 ubiquitin ligases balance immunity and yield through non-proteolytic ubiquitination.

J Integr Plant Biol

January 2025

National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.

The rice E3 ubiquitin ligases OsCIE1 and IPI7 mediate the non-proteolytic polyubiquitination of the pattern-recognition receptor kinase OsCERK1 and the transcription factor IPA1, respectively, in response to Magnaporthe oryzae infection, thereby fine-tuning rice growth-immunity trade-offs.

View Article and Find Full Text PDF

Heme is known to bind to the intrinsically disordered region (IDR) to regulate protein function. The binding of heme to the IDR of transcription factor BACH2 promotes plasma cell differentiation, but the molecular basis is unknown. Heme was found to increase BACH2 IDR interaction with TANK-binding kinase 1 (TBK1).

View Article and Find Full Text PDF

Ethylene is an important plant hormone whose production relies on the action of key enzymes, one of which is 1-aminocyclopropane-1-carboxylate synthase (ACS). There are three classes of ACS, which are all partially regulated by degradation through the ubiquitin-proteasome system (UPS), which regulates ethylene production. Arabidopsis has a single class III ACS, ACS7, but although it is known to be degraded by the 26S proteasome, the UPS proteins involved are poorly characterised.

View Article and Find Full Text PDF

Ufmylation: a potential modification for neurological diseases.

Curr Neuropharmacol

January 2025

Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.

Neurological disorders are the leading health threats worldwide, characterized by impairments in consciousness, cognition, movement, and sensation, and can even lead to death. UFMylation is a novel post-translational modification (PTM) that serves as an important regulatory factor, promoting the complexity of protein structures and enhancing the diversity and specificity of functions. In UFMylation, ubiquitin-fold modifier 1 (UFM1) is covalently transferred to the primary amine of a lysine residue on the target protein through the synergistic action of three enzymes: the activating enzyme E1 of UFM1, the coupling enzyme E2 of UFM1, and the ligase E3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!