In recycled hydroponics, successive crop cultivation by maintaining electrical conductivity (EC) suffers lower growth performance due to accumulating autotoxic root exudates. In this study, the efficiency of alternate current electro degradation (AC-ED) was evaluated for degrading allelochemicals and recovering retarded lettuce yield cultivated in EC-adjusted repeatedly used nutrient solutions. From benzoic acid (BA)-added nutrient solution, BA was completely degraded after 24 h by applying AC-ED at 551 and 940 Hz frequency with 50 and 80% electrical duty. In lettuce bioassay, fresh mass was negatively affected without the AC-ED-treated solution. Finally, lettuce seedlings were hydroponically grown in a plant factory using a half-strength Enshi nutrient solution. Culture solutions were unchanged in non-renewed solutions. Nutrient elements were supplied based on the EC (1.42 dS m) of culture solutions. The fresh weight of lettuce was gradually decreased in subsequent cultures. Nutrient absorption rate was reduced in non-renewed solutions though enough of all nutrient elements were available in the solution. In the final culture, the highest shoot fresh weight (SFW) was recorded in the renewed (83.0 g plant) solution which was similar to the AC-ED-treated solution (81.0 g plant) and the lowest (58.0 g plant) was in the non-renewed solution. By applying AC-ED, 40% lettuce yield was recovered in the EC-adjusted solution without renewing. Therefore, it is recommended that the continuous application of AC-ED with the capacity of 551 Hz and 50% duty would be applied for recovering the retarded lettuce yield cultivated with repeatedly used culture solutions in recycled hydroponics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2023.2283788 | DOI Listing |
Environ Res
January 2025
School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China; Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, College of Chemistry and Chemical Engineering, Yili Normal University, Yining, 835000, China. Electronic address:
Biomass ash (BA) contains alkaline cations such as K, Ca, and Mg. Due to its high pH, direct application to the soil may result in soil salinization. Composting of BA with organic matter is an effective strategy, but the composting cycle is long and there is a large amount of insoluble residue in the product.
View Article and Find Full Text PDFFront Plant Sci
September 2024
Urban Horticulture and Sustainability Laboratory, Texas Tech University, Plant and Soil Science, Lubbock, TX, United States.
Soilless production systems (i.e hydroponics, aeroponics, aquaponics) have become commonplace in urban settings and controlled environments. They are efficient nutrient recyclers, space savers, and water conservers.
View Article and Find Full Text PDFEcotoxicol Environ Saf
October 2024
College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; State & Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang 325035, PR China; Key Laboratory of Zhejiang Province for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang 325035, PR China. Electronic address:
Heliyon
September 2024
Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology (IIT) Roorkee, Uttarakhand, 247667, India.
Hydroponic effluent (HE), enriched with inorganic nutrients, presents a viable, low-cost cultivation medium for microalgal biomass production and subsequent resource recovery. However, downstream processing, particularly biomass harvesting, remains a critical challenge for microalgal biorefineries. Therefore, the present study explored the potential of microalgal-fungal pellets (MAFP) in HE recycling for the production of biochemical-rich biomass.
View Article and Find Full Text PDFJ Environ Sci (China)
March 2025
Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China. Electronic address:
With the increasing demand for water in hydroponic systems and agricultural irrigation, viral diseases have seriously affected the yield and quality of crops. By removing plant viruses in water environments, virus transmission can be prevented and agricultural production and ecosystems can be protected. But so far, there have been few reports on the removal of plant viruses in water environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!