Introduction: We now recognize that plant genotype affects the assembly of its microbiome, which in turn, affects essential plant functions. The production system for crop plants also influences the microbiome composition, and as a result, we would expect to find differences between conventional and organic production systems. Plant genotypes selected in an organic regime may host different microbiome assemblages than those selected in conventional environments. We aimed to address these questions using recombinant inbred populations of snap bean that differed in breeding history.
Methods: Rhizosphere microbiomes of conventional and organic common beans ( L.) were characterized within a long-term organic research site. The fungal and bacterial communities were distinguished using pooled replications of 16S and ITS amplicon sequences, which originated from rhizosphere samples collected between flowering and pod set.
Results: Bacterial communities significantly varied between organic and conventional breeding histories, while fungal communities varied between breeding histories and parentage. Within the organically-bred populations, a higher abundance of a plant-growth-promoting bacteria, , was identified. Conventionally-bred beans hosted a higher abundance of nitrogen-fixing bacteria that normally do not form functional nodules with common beans. Fungal communities in the organically derived beans included more arbuscular mycorrhizae, as well as several plant pathogens.
Discussion: The results confirm that the breeding environment of crops can significantly alter the microbiome community composition of progeny. Characterizing changes in microbiome communities and the plant genes instrumental to these changes will provide essential information about how future breeding efforts may pursue microbiome manipulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634438 | PMC |
http://dx.doi.org/10.3389/fpls.2023.1251919 | DOI Listing |
JMIRx Med
January 2025
CHRIST (Deemed to be University), Hosur Road, Bhavani Nagar, Bengaluru, 560029, India, 91 8867055238.
Background: Rural health care delivery remains a global challenge and India is no exception, particularly in regions with Indigenous populations such as the state of Jharkhand. The Community Health Centres in Jharkhand, India, are staffed by Indigenous workers who play a crucial role in bridging the health care gap. However, their motivation and retention in these challenging areas are often influenced by a complex mix of sociocultural and environmental factors.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
Extreme ultraviolet (EUV) lithography has enabled significant reductions in device dimensions but is often limited by capillary force-driven pattern collapse in conventional wet processes. Recent dry-development approaches, while promising, frequently require toxic etchants or specialized equipment, limiting their broader applicability and highlighting the need for more sustainable, cost-effective alternatives. In this study, highly reactive, etchant-free dry-developable EUV photoresists using N-heterocyclic carbene (NHC)-based metal-ligand complexes, achieving half-saturation at EUV doses of 8.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
Thick metamorphic buffers are considered indispensable for III-V semiconductor heteroepitaxy on large lattice and thermal-expansion mismatched silicon substrates. However, III-nitride buffers in conventional GaN-on-Si high electron mobility transistors (HEMT) impose a substantial thermal resistance, deteriorating device efficiency and lifetime by throttling heat extraction. To circumvent this, a systematic methodology for the direct growth of GaN after the AlN nucleation layer on six-inch silicon substrates is demonstrated using metal-organic vapor phase epitaxy (MOVPE).
View Article and Find Full Text PDFGlufosinate (GLUF) and glyphosate (GLY) are nonselective phosphorus-containing amino acid herbicides that are widely used in agricultural gardens and noncultivated areas. These herbicides give rise to a number of key metabolites, with 3-methyl phosphinicopropionic acid (MPPA), -acetyl glufosinate (-acetyl GLUF), aminomethyl phosphonic acid (AMPA), -acetyl aminomethyl phosphonic acid (-acetyl AMPA), -acetyl glyphosate (-acetyl GLY), -methyl glyphosate (-methyl GLY) as the major metabolites obtained from GLUF and GLY. Extensive use of these herbicides may lead to their increased presence in the environment, especially aquatic ecosystems.
View Article and Find Full Text PDFSci Rep
January 2025
Depto de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 31.270-901, Brazil.
Magnetoliposomes containing magnetite, soy lecithin, stigmasterol, and beta-sitosterol of the mean size minor than 160 nm were obtained by a scalable and green process using autoclave and sonication without organic solvents. The formation, size of the liposome, linkage, and encapsulation of the magnetite were evaluated by Cryo-TEM. The stability of magnetoliposomes after storage for 6 months at 4 °C was improved by liposome size, the ability of soy lecithin to preserve the magnetite phase against oxidation, pH, polydispersity index, and zeta potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!