Background And Objectives: Epigenetic estimators based on DNA methylation levels have emerged as promising biomarkers of human aging. These estimators exhibit natural variations across human groups, but data about indigenous populations remain underrepresented in research. This study aims to investigate differences in epigenetic estimators between two distinct human populations, both residing in the Gran Chaco region of Argentina, the Native-American Wichí, and admixed Criollos who are descendants of intermarriages between Native Americans and the first European colonizers, using a population genetic approach.
Methodology: We analyzed 24 Wichí (mean age: 39.2 ± 12.9 yo) and 24 Criollos (mean age: 41.1 ± 14.0 yo) for DNA methylation levels using the Infinium MethylationEPIC (Illumina) to calculate 16 epigenetic estimators. Additionally, we examined genome-wide genetic variation using the HumanOmniExpress BeadChip (Illumina) to gain insights into the genetic history of these populations.
Results: Our results indicate that Native-American Wichí are epigenetically older compared to Criollos according to five epigenetic estimators. Analyses within the Criollos population reveal that global ancestry does not influence the differences observed, while local (chromosomal) ancestry shows positive associations between specific SNPs located in genomic regions over-represented by Native-American ancestry and measures of epigenetic age acceleration (AgeAccelHannum). Furthermore, we demonstrate that differences in population ecologies also contribute to observed epigenetic differences.
Conclusions And Implications: Overall, our study suggests that while the genomic history may partially account for the observed epigenetic differences, non-genetic factors, such as lifestyle and ecological factors, play a substantial role in the variability of epigenetic estimators, thereby contributing to variations in human epigenetic aging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632719 | PMC |
http://dx.doi.org/10.1093/emph/eoad034 | DOI Listing |
Biogerontology
January 2025
Research Centre for Molecular Exercise Science, Hungarian University of Sport Science, Alkotás U. 42-48, Budapest, 1123, Hungary.
Extracellular vesicles (EVs) are implicated in inter-organ communication, which becomes particularly relevant during aging and exercise. DNA methylation-based aging clocks reflect lifestyle and environmental factors, while regular exercise is known to induce adaptive responses, including epigenetic adaptations. Twenty individuals with High-fitness (aged 57.
View Article and Find Full Text PDFClin Epigenetics
January 2025
ISGlobal, Barcelona, Spain.
Background/objective: There is limited knowledge on how diet affects the epigenome of children. Ultra-processed food (UPF) consumption is emerging as an important factor impacting health, but mechanisms need to be uncovered. We therefore aimed to assess the association between UPF consumption and DNA methylation in children.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
Background/objectives: A-kinase-interacting protein 1 (AKIP1) has been discovered to be a pivotal signaling adaptor in the regulation of human labor and associated with preterm birth, but its effect on fetal growth was still unclear. Meanwhile, the regulation role of DNA methylation (DNAm) on placental and fetal development has been demonstrated. Therefore, we aimed to investigate the association of DNAm in maternal peripheral blood with placental development and full-term small for gestational age (FT-SGA) neonates, and to explore whether placenta mediate the association between DNAm and FT-SGA; Methods: This study was a case-control study including 84 FT-SGAs and 84 FT-AGAs derived from the Shenzhen Birth Cohort Study.
View Article and Find Full Text PDFBMC Public Health
January 2025
Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong Province, China.
Introduction: Gastrointestinal (GI) cancers account for over a quarter of all cancer-related deaths in the United States; however, the latest trends in their prevalence remain unclear.
Methods: Data on GI cancers were obtained from the Global Burden of Disease Study 2021. Age-standardized incidence rates (ASIR) and age-standardized mortality rates (ASMR) were estimated across various states, sexes, ages, and risk factors, and annual percentage changes were calculated.
Aging (Albany NY)
December 2024
CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
The ability to accurately quantify biological age could help monitor and control healthy aging. Epigenetic clocks have emerged as promising tools for estimating biological age, yet they have been developed from heterogeneous bulk tissues, and are thus composites of two aging processes, one reflecting the change of cell-type composition with age and another reflecting the aging of individual cell-types. There is thus a need to dissect and quantify these two components of epigenetic clocks, and to develop epigenetic clocks that can yield biological age estimates at cell-type resolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!