A series of porous MOF materials, viz., Pd@IRMOF-9 ( = 2, 5, and 10%) were synthesized by loading varying concentrations of Pd(II) on IRMOF-9. The synthesized MOF materials were characterized by ltravioletisible (UV-Vis) spectroscopy, Fourier transform Infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), Brunauer-Emmett-Teller (BET), and scanning electron microscopy (SEM) analyses. UV, FT-IR, and PXRD data of Pd(II)@IRMOF-9 were found to be in line with those of IRMOF-9, which suggests that the structure of the IRMOF-9 remained intact upon Pd(II) loading. Surface morphology of IRMOF-9 showed sheet-like structures, and upon incorporation of Pd(II) to IRMOF-9, porous cauliflower-shaped MOFs were obtained. The SEM area mapping of Pd@IRMOF-9 confirmed the homogeneous dispersion of Pd(II) on IRMOF-9. BET measurements suggested an increase in the surface area as well as pore size upon incorporation of Pd(II) on IRMOF-9. Due to high porosity and high petal density, Pd@IRMOF-9 demonstrated degradation of seven organic dyes, namely, orange G, methylene blue, methyl orange, congo red , methyl red, rhodamine 6G, and neutral red. It showed excellent results with >90% dye degradation efficiency in case of cationic, anionic as well as neutral dyes. Degradation of organic dyes followed the pseudo-first-order kinetics. Kinetic parameters, and , were calculated using the double reciprocal Lineweaver-Burk plot and were found to be 13.2 μM and 26.68 × 10 M min, respectively. Recyclability studies of heterogeneous Pd@IRMOF-9 demonstrated the degradation of CR dye for five consecutive cycles without significant loss of its catalytic activity. Herein, a robust and efficient material for the degradation of organic dyes has been developed and demonstrated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635638 | PMC |
http://dx.doi.org/10.1021/acsomega.3c03014 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Waste Science and Technology, Luleå University of Technology, Luleå, Sweden.
Improper management of wood impregnation chemicals and treated wood has led to soil contamination at many wood treatment sites, particularly with toxic substances like creosote oil and chromated copper arsenate (CCA). The simultaneous presence of these pollutants complicates the choice of soil remediation technologies, especially if they are to be applied in situ. In this laboratory study, we attempted to immobilise arsenic (As) and simultaneously degrade polycyclic aromatic hydrocarbons (PAHs) (constituents of creosote oil) by applying a modified electrochemical oxidation method.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
A novel electrochemical aptasensor based on bimetallic zirconium and copper oxides embedded within mesoporous carbon (denoted as ZrOCuO@mC) was constructed to detect miRNA. The porous ZrOCuO@mC was created through the pyrolysis of bimetallic zirconium/copper-based metal-organic framework (ZrCu-MOF). The substantial surface area and high porosity of ZrOCuO@mC nanocomposite along with its robust affinity toward aptamer strands, facilitated the effective anchoring of aptamer strands on the ZrOCuO@mC-modified electrode surface.
View Article and Find Full Text PDFClin Pharmacol Ther
January 2025
Clinical Pharmacology, Pfizer R&D, Pfizer Inc, New York, New York, USA.
Rifampicin is a widely employed index inhibitor to assess the impact of organic anion transporting polypeptide 1B (OATP1B) inhibition on investigational drugs. The observation of nitrosamines in certain drug products, including rifampicin, has impacted the conduct of clinical drug-drug interaction (DDI) studies with rifampicin drug products. Cyclosporine is a recommended alternative to assess in vivo OATP1B activity; however, challenges exist in its use due to pharmacokinetic (PK) variability and non-selective inhibition of other drug disposition mechanisms.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Department of Environmental Science, Stockholm University, Sweden.
In surface waters, photodegradation is a major abiotic removal pathway of the neurotoxin monomethylmercury (MMHg), acting as a key control on the amounts of MMHg available for biological uptake. Different environmental factors can alter the rate of MMHg photodegradation. However, our understanding of how MMHg photodegradation pathways in complex matrixes along the land-to-ocean aquatic continuum respond to changes in salinity, dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) composition is incomplete.
View Article and Find Full Text PDFChemistry
January 2025
Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg, Department of Materials Science and Engineering, Institute of Materials for Electronics and Energy Technology (i-MEET), Martensstraße 7, 91058, Erlangen, GERMANY.
Perovskite solar cells (PSCs) have recently achieved over 26% power conversion efficiency, challenging the dominance of silicon-based alternatives. This progress is significantly driven by innovations in hole transport materials (HTMs), which notably influence the efficiency and stability of PSCs. However, conventional organic HTMs like PTAA, although highly efficient, suffer from thermal degradation, moisture ingress, and high cost.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!