A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Targeted transplantation of engineered mitochondrial compound promotes functional recovery after spinal cord injury by enhancing macrophage phagocytosis. | LitMetric

Mitochondria are crucial in sustaining and orchestrating cellular functions. Capitalizing on this, we explored mitochondrial transplantation as an innovative therapeutic strategy for acute spinal cord injury (SCI). In our study, we developed an engineered mitochondrial compound tailored to target macrophages within the SCI region. Sourced from IL-10-induced Mertk bone marrow-derived macrophages, we conjugated a peptide sequence, cations-cysteine-alanine-glutamine-lysine (CAQK), with the mitochondria, optimizing its targeting affinity for the injury site. Our data demonstrated that these compounds significantly enhanced macrophage phagocytosis of myelin debris, curtailed lipid buildup, ameliorated mitochondrial dysfunction, and attenuated pro-inflammatory profiles in macrophages, both in vitro and . The intravenously delivered mitochondrial compounds targeted the SCI epicenter, with macrophages being the primary recipients. Critically, they promoted tissue regeneration and bolstered functional recovery in SCI mice. This study heralds a transformative approach to mitochondrial transplantation in SCI, spotlighting the modulation of macrophage activity, phagocytosis, and phenotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632560PMC
http://dx.doi.org/10.1016/j.bioactmat.2023.10.016DOI Listing

Publication Analysis

Top Keywords

engineered mitochondrial
8
mitochondrial compound
8
functional recovery
8
spinal cord
8
cord injury
8
macrophage phagocytosis
8
mitochondrial transplantation
8
mitochondrial
6
sci
5
targeted transplantation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!