Root-knot nematodes ( spp.) are obligate sedentary endoparasites, considered severe crop-damaging taxa among all plant-parasitic nematodes globally. Their attacks through parasitic proteins alter the physiology and machinery of the host cells to favour parasitism and reduction in crop yield. Currently, the use of excessive pesticides as a fast remedy to manage this pest is hazardous for both the environment and humans. Keeping this view in mind, there is an urgent need for developing efficient eco-friendly strategies. Bio-control as an eco-friendly is considered the best approach to manage nematodes without disturbing non-target microbes. In bio-control, living agents such as fungi and bacteria are the natural enemies of nematodes and the best substitute for pesticides. Fungi, including nematode-trapping fungi, can sense host signals and produce special trapping devices ., constricting rings and adhesive knobs/loops, to capture nematodes and kill them. Whereas, endo-parasitic fungi kill nematodes by enzymatic secretions and spore adhesion through their hyphae. Bacteria can also control nematodes by producing antibiotic compounds, competing for nutrients and rhizosphere, production of hydrolytic enzymes ., chitinases, proteases, lipases, and induction of systemic resistance (ISR) in host plants. Scientists throughout the world are trying to evolve environmentally benign methods that sustain agricultural production and keep nematodes below a threshold level. Whatever methods evolve, in the future the focus should be on important aspects like green approaches for managing nematodes without disturbing human health and the environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632526 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e21653 | DOI Listing |
Sci Rep
December 2024
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.
Entomopathogenic nematodes (EPNs) associated with their symbiotic bacteria can effectively kill insect pests, in agriculture, forestry and floriculture. Industrial-scale production techniques for EPNs have been established, including solid and liquid monoculture systems. It is found that supplement of 0.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biology, California State University Northridge, Northridge, CA, USA.
The benefits of sleep extend beyond the nervous system. Peripheral tissues impact sleep regulation, and increased sleep is observed in response to damaging conditions, even those that selectively affect non-neuronal cells. However, the 'sleep need' signal released by stressed tissues is not known.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
The mechanisms underlying the impact of probiotic supplementation on health remain largely elusive. While previous studies primarily focus on the discovery of novel bioactive bacteria and alterations in the microbiome environment to explain potential probiotic effects, our research delves into the role of living Lactiplantibacillus (formerly known as Lactobacillus) and their conditioned media, highlighting that only the former, not dead bacteria, enhance the healthspan of Caenorhabditis elegans (C. elegans).
View Article and Find Full Text PDFSyst Biol
December 2024
Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.
The phylum Nematoda represents one of the most cosmopolitan and abundant metazoan groups on Earth. In this study, we reconstructed the phylogenomic tree for phylum Nematoda. A total of 60 genomes, belonging to eight nematode orders, were newly sequenced, providing the first low-coverage genomes for the orders Dorylaimida, Mononchida, Monhysterida, Chromadorida, Triplonchida, and Enoplida.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
School of Biosciences, University of Kent, Canterbury, United Kingdom.
Introduction: Antimicrobial resistance is a growing health problem. Pseudomonas aeruginosa is a pathogen of major concern because of its multidrug resistance and global threat, especially in health-care settings. The pathogenesis and drug resistance of depends on its ability to form biofilms, making infections chronic and untreatable as the biofilm protects against antibiotics and host immunity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!