The significance of radiation shielding is on the rise due to the expanding areas exposed to radiation emissions. Consequently, there is a critical need to develop metal alloys and composites that exhibit excellent capabilities in absorbing neutron and gamma rays for effective radiation shielding. Low-density Ti-based alloys with controlled structural properties can be used for radiation protection purposes. The present research investigates boron-doped Ti-based alloy, TiCuZrB, which is synthesized by arc melting technique, and its structural, mechanical properties, neutron, and gamma-ray transmission rate were investigated. Monte Carlo N-Particle simulation (MCNP6.2) code is used for calculating the Thermal (2.53 10 MeV) and fast (2 MeV) neutron transmission ratio (I/I) dependent on the sample thickness. The Phy-x program is employed for calculating the gamma-ray LAC, MAC, HVL, TVL, and MFP values. The calculated neutron shielding performance parameters of TiCuZrB alloy were compared with materials in the literature. It was found that TiCuZrB alloy demonstrated impressive physical characteristics, suggesting that it can serve as a promising alloy for neutron and gamma-ray shielding applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632528 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e21696 | DOI Listing |
Int J Pharm
January 2025
Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China. Electronic address:
Cancer associated fibroblasts (CAFs) are one of the most important stromal cells in the tumor microenvironment, playing a pivotal role in the development, recurrence, metastasis, and immunosuppression of cancer and treatment resistance. Here, we developed a core-shell biomimetic nanosystem termed as FAP-C NPs. This system was comprised of 4 T1 extracellular vesicles fused with a FAP single-chain antibody fragment to form the biomimetic shell, and PLGA nanoparticles loaded with calcipotriol as the core.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India.
Under changing climatic conditions, plant exposure to high-intensity UV-B can be a potential threat to plant health and all plant-derived human requirements, including food. It's crucial to understand how plants respond to high UV-B radiation so that proper measures can be taken to enhance tolerance towards high UV-B stress. We found that BBX22, a B-box protein-coding gene, is strongly induced within one hour of exposure to high-intensity UV-B.
View Article and Find Full Text PDFJ Appl Clin Med Phys
January 2025
University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany.
Purpose: The self-shielding radiosurgery system ZAP-X consists of a 3 MV linear accelerator and eight round collimators. For this system, it is a common practice to perform the reference dosimetry using the largest 25 mm diameter collimator at a source-to-axis distance (SAD) of 45 cm with the PTW Semiflex3D chamber placed at a measurement depth of 7 mm in water. Existing dosimetry protocols do not provide correction for these measurement conditions.
View Article and Find Full Text PDFAnaesthesia
January 2025
The Christie NHS Foundation Trust, Manchester, UK.
Introduction: Radiotherapy is currently used in approximately one-third of children with cancer. Treatments are typically received as weekday outpatient appointments over 3-6 weeks. The treatment is painless but requires a still, co-operative patient who can lie alone in set positions, facilitated by the use of immobilisation devices, for up to 1 h.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China.
Green tea catechins (GTCs) are a group of bioactive polyphenolic compounds found in fresh tea leaves ( (L.) O. Kuntze).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!