Background And Aim: Diabetic Kidney Disease (DKD) is a common microvascular complication of diabetes mellitus. Multi-center, randomized controlled trials have shown that Qidan Dihuang Granule (QDDHG) reduces the levels of albuminuria of DKD. However, the specific mechanisms of QDDHG on DKD are not clarified. Thus, this study utilized network pharmacology, UHPLC-MS/MS (Ultra-High Performance Liquid Chromatography - Mass Spectrometry) and animal experiments to reveal the mechanisms of QDDHG on DKD.

Experimental Procedure: Screening and retrieving active ingredients and corresponding targets of QDDHG on DKD through the TCMSP, ETCM, Disgenet, GeneCards, Omim and DrugBank databases. The PPI were performed with BioGrid, STRING, OmniPath, InWeb-IM. AutoDock Vina molecular docking module to estimate the validation from the compounds and target proteins. Free energy to estimate the binding affinity for identified compounds and target proteins. The ingredients of QDDHG were analyzed utilizing UHPLC-MS/MS. experiment with db/db mice were used to verify the targets and pathway predicted by network pharmacology.

Results And Conclusion: The results demonstrated that QDDHG has 18 active compounds and 13 target proteins of QDDHG exerted a crucial role in treatment of DKD. QDDHG affect the multiple biological processes included cellular response to lipid, response to oxidative stress, and various pathways, such as AGE-RAGE, PI3K-Akt, MAPK, TNF, EGFR, STAT3. The results of UHPLC-MS/MS showed that six ingredients predicted by network pharmacology were also verified in experiment. experiment verified the effects of QDDHG on protecting the renal function mainly through inhibited the expression of EGFR, STAT3 and pERK in the db/db mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638057PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e21714DOI Listing

Publication Analysis

Top Keywords

network pharmacology
12
compounds target
12
target proteins
12
qddhg
9
qidan dihuang
8
dihuang granule
8
diabetic kidney
8
kidney disease
8
pharmacology uhplc-ms/ms
8
mechanisms qddhg
8

Similar Publications

Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.

View Article and Find Full Text PDF

Limited treatment options are available for bladder cancer (BCa) resulting in extremely high mortality rates. Cyclovirobuxine D (CVB-D), a naturally alkaloid, reportedly exhibits notable antitumor activity against diverse tumor types. However, its impact on CVB-D on BCa and its precise molecular targets remain unexplored.

View Article and Find Full Text PDF

Deep Neural Network Analysis of the 12-Lead Electrocardiogram Distinguishes Patients With Congenital Long QT Syndrome From Patients With Acquired QT Prolongation.

Mayo Clin Proc

January 2025

Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN; Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN. Electronic address:

Objective: To test whether an artificial intelligence (AI) deep neural network (DNN)-derived analysis of the 12-lead electrocardiogram (ECG) can distinguish patients with long QT syndrome (LQTS) from those with acquired QT prolongation.

Methods: The study cohort included all patients with genetically confirmed LQTS evaluated in the Windland Smith Rice Genetic Heart Rhythm Clinic and controls from Mayo Clinic's ECG data vault comprising more than 2.5 million patients.

View Article and Find Full Text PDF

Previous studies have suggested that ginsenoside Rg glycine ester derivative (RG) exhibits therapeutic potential in mitigating hypoxia. This study aimed to elucidate the potential mechanism of RG in hypoxia injury through a combined approach of metabolomics and network pharmacology. Initially, a CoCl-induced cell hypoxia model was established, and the therapeutic impact of RG on biochemical indices was evaluated.

View Article and Find Full Text PDF

Background: Non-small cell lung cancer (NSCLC) is a fatal disease, and radioresistance is an important factor leading to treatment failure and disease progression. The objective of this research was to detect radioresistance-related genes (RRRGs) with prognostic value in NSCLC.

Methods: The weighted gene coexpression network analysis (WGCNA) and differentially expressed genes (DEGs) analysis were performed to identify RRRGs using expression profiles from TCGA and GEO databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!