The purpose of the present study was to examine the acute impact of resistance exercise on basketball shooting mechanics and accuracy. Ten resistance-trained recreationally active men with previous basketball playing experience (x̄ ± SD; height = 182.6 ± 9.7 cm; body mass = 79.2 ± 13.9 kg; age = 25.6 ± 5.5 years) performed control, upper-body, and lower-body training sessions in randomized order followed by 5 sets of stationary free-throw (4.57 m), two-point (5.18 m) and three-point (6.75 m) basketball shooting drills in 30 min time increments. Each testing session was separated 3-7 days apart. Kinematic variables during both the preparatory and release phases of the shooting motion were derived from a high-definition camera recording at 120 fps positioned 10 m away perpendicular to the participant's shooting plane of motion. Restricted maximum likelihood linear mixed-effects model analysis revealed that a combination of all fixed effects could account for <1% of the total variance in each dependent variable pertaining to basketball shooting mechanics. A 9.9-11.8% decrease in two-point and three-point shooting accuracy was observed immediately following an upper-body training session. However, the observed performance suppression disappeared 30 min post-exercise completion. Overall, the findings suggest that performing upper-body or lower-body resistance training prior to on-court practice sessions has no impact on free-throw, two-point, and three-point biomechanical parameters examined in the present study and a minor acute impact on mid-range and long-range shooting accuracy in male basketball players.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634422 | PMC |
http://dx.doi.org/10.3389/fspor.2023.1272478 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!