Osteoporosis, one of the serious public health problems worldwide, can lead to degeneration of the bone structure and increased risk of fractures. Epigallocatechin gallate (EGCG) is a natural product with potential efficacy in inhibiting bone loss. However, the specific mechanism remains unclear. This study first investigated the role of EGCG in preventing dexamethasone (DEX)-induced osteoporosis by regulating intestinal microbiota and serum metabolites. We detected the bone density, bone microstructure, and changes in intestinal microorganisms and serum metabolites. According to our results, EGCG inhibited the decline of bone density, protected the bone microstructure, increased microbial diversity, promoted the abundance of beneficial bacteria such as Prevotellaceae and , and inhibited the abundance of pathogenic bacteria such as Peptostreptococcaceae. There were also significant changes in serum metabolites among different treatments. Differential metabolites were mainly involved in sphingolipid metabolism and glycerophospholipid metabolism pathways, especially ceramide (d18:0/16:0(2OH)), phosphatidylserine (P-20:0/20:4(5,8,11,14)), phosphatidylserine (18:2(9,12)/12:0), and phosphatidylethanolamine (O-16:0/0:00), which were increased after EGCG treatment. Notably, most of the above metabolites were positively correlated with bone mineral density, BV/TV and Tb·Th, and negatively correlated with Tb·Sp. In summary, EGCG can prevent bone damage, promote the production of beneficial bacteria and metabolites, and enhance immune function. This study provides a basis and reference for the prevention and treatment of osteoporosis, as well as the application of EGCG in maintaining body health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3fo03233g | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, China.
Emerging research has highlighted the significant role of the gut microbiota in atherosclerosis (AS), with microbiota-targeted interventions offering promising therapeutic potential. A central component of this process is gut-derived metabolites, which play a crucial role in mediating the distal functioning of the microbiota. In this study, a comprehensive microbiome-metabolite analysis using fecal and serum samples from patients with atherosclerotic cardiovascular disease and volunteers with risk factors for coronary heart disease and culture histology is performed, and identified the core strain Bacteroides ovatus (B.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland.
Background: Due to its exceptional effectiveness, clozapine (CLO), whose metabolite is norclozapine (NCLO), is a drug of choice in the management of treatment-resistant schizophrenia. The purpose of this study was to assess the factors modifying the CLO/NCLO ratio (CNR).
Methods: A total of 446 blood samples (233 of which were drawn from females and 213 from males, aged from 18 to 77 years) were analyzed in this study.
Front Nutr
January 2025
Department of Ultrasound, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
Background: Hyperuricemia and non-alcoholic fatty pancreas disease (NAFPD) are prevalent metabolic diseases, but the relationship between them remains underexplored.
Methods: Eighteen Sprague-Dawley rats were randomly assigned to three groups: normal (CON), high-fat (PO), and high-fat high-uric acid (PH). After 12 weeks, serum uric acid (SUA) and triacylglycerol levels were measured.
Environ Health (Wash)
January 2025
Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
Abundant epidemiological studies have conclusively demonstrated the effects of short-term ozone (O) exposure on the incidence and mortality of cardiovascular diseases. However, the mechanism of its influence remains unverified. This study aimed to assess the impact of O on metabolomic-based biomarkers in acute myocardial infarction (AMI) patients.
View Article and Find Full Text PDFBMC Chem
January 2025
Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
Trimethylamine-N-oxide (TMAO) is gut microbiota-derived metabolite, plays a critical role in human health and diseases such as metabolic, cardiovascular, colorectal cancer and, neurological disorders. Binding interactions between TMAO and serum albumins are crucial to understand the impact of TMAO on disease mechanisms. However, detailed insights into the interaction mechanisms, preferred binding locations, and conformational changes in BSA upon binding TMAO are still unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!