Interlayer magnetic couplings of low-dimensional magnets have significantly dominated magnetic behavior through skillful regulation of interlayer interacting forces. To identify interaction-force-regulated interlayer magnetic communications, two air-stable Co(II)-based coordination polymers (CPs), a well-isolated layered structure with approximately 12.6 Å interlayer separation and a carboxylate-extended three-dimensional framework with an inter-ribbon distance of 5.8 Å, have been solvothermally fabricated by varying polycarboxylate mediators in a ternary Co-tetrazolate-carboxylate system. The layered CP with antiparallel-arranged {Co(COO)} chains interconnected only cyclic tetrazolyl linkages behaves as a spin-canted antiferromagnet with a Néel temperature of 2.6 K, due to strong intralayer antiferromagnetic couplings and negligible interlayer magnetic interactions. In contrast, the compact three-dimensional framework with corner-sharing Δ-ribbons tightly aggregated through μ-η:η-COO is a field-induced metamagnet from a canted antiferromagnet to a weak ferromagnet with a small critical field of = 90 Oe. Apparently, these interesting magnetic responses reveal the importance of an interacting force from the magnetic subunits for the magnetic behavior of the molecular magnet, greatly enriching the magnetostructural correlations of transition-metal-based molecular magnets.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3dt02851hDOI Listing

Publication Analysis

Top Keywords

interlayer magnetic
12
magnetic
8
magnetic responses
8
co-tetrazolate-carboxylate system
8
canted antiferromagnet
8
field-induced metamagnet
8
magnetic behavior
8
three-dimensional framework
8
interlayer
6
interlayer interaction-force-tuned
4

Similar Publications

Singlet exciton fission has the potential to increase the efficiency of crystalline silicon solar cells beyond the conventional single junction limit. Perhaps the largest obstacle to achieving this enhancement is uncertainty about energy coupling mechanisms at the interfaces between silicon and exciton fission materials such as tetracene. Here, the previously reported silicon-hafnium oxynitride-tetracene structure is studied and a combination of magnetic-field-dependent silicon photoluminescence measurements and density functional theory calculations is used to probe the influence of the interlayer composition on the triplet transfer process across the hafnium oxynitride interlayer.

View Article and Find Full Text PDF

Alternating chimera states and synchronization in multilayer neuronal networks with ephaptic intralayer coupling.

Cogn Neurodyn

December 2024

State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Engineering Research Center of Nondestructive Testing and Structural Integrity Evaluation, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049 China.

Over the past decade, most of researches on the communication between the neurons are based on synapses. However, the changes in action potentials in neurons may produce complex electromagnetic fields in the media, which may also have an impact on the electrical activity of neurons. To explore this factor, we construct a two-layer neuronal network composed of identical Hindmarsh-Rose neurons.

View Article and Find Full Text PDF

Multidirectional Sliding Ferroelectricity of Rhombohedral-Stacked InSe for Reconfigurable Photovoltaics and Imaging Applications.

Adv Mater

December 2024

Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China.

Through the stacking technique of 2D materials, the interfacial polarization can be switched by an interlayer sliding, known as sliding ferroelectricity, which is advantageous in ultra-thin thickness, high switching speed, and high fatigue resistance. However, uncovering the relationship between the sliding path and the polarization state in rhombohedral-stacked materials remains a challenge, which is the key to 2D sliding ferroelectricity. Here, layer-dependent multidirectional sliding ferroelectricity in rhombohedral-stacked InSe (γ-InSe) is reported via dual-frequency resonance tracking piezoresponse force microscopy and conductive atomic force microscopy.

View Article and Find Full Text PDF

Wire-arc-directed energy deposition (WA-DED) stands out as a highly efficient and adaptable technology for near-net-shaped metal manufacturing, with promising application prospects. However, the shape control capability of this technology is relatively underdeveloped, necessitating further refinement. This review summarizes the latest advancements in the shape control of WA-DED technology, covering four pivotal areas: the regulation of various process parameters, optimization of the deposition paths, control through auxiliary energy and mechanical fields, and synergy between additive and subtractive manufacturing approaches.

View Article and Find Full Text PDF

Reservoir heterogeneity significantly affects reservoir flooding efficiency and the formation and distribution of residual oil. As an effective method for enhancing recovery, polymer-surfactant (SP) flooding has a complex mechanism of action in inhomogeneous reservoirs. In this study, the effect of reservoir heterogeneity on the SP drive was investigated by designing core parallel flooding experiments combined with NMR and CT scanning techniques, taking conglomerate reservoirs in a Xinjiang oilfield as the research object.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!