DELAY OF GERMINATION 1 is a key regulator of dormancy in flowering plants before seed germination. Bryophytes develop haploid spores with an analogous function to seeds. Here, we investigate whether DOG1 function during germination is conserved between bryophytes and flowering plants and analyse the underlying mechanism of DOG1 action in the moss Physcomitrium patens. Phylogenetic and in silico expression analyses were performed to identify and characterise DOG1 domain-containing genes in P. patens. Germination assays were performed to characterise a Ppdog1-like1 mutant, and replacement with AtDOG1 was carried out. Yeast two-hybrid assays were used to test the interaction of the PpDOG1-like protein with DELLA proteins from P. patens and A. thaliana. P. patens possesses nine DOG1 domain-containing genes. The DOG1-like protein PpDOG1-L1 (Pp3c3_9650) interacts with PpDELLAa and PpDELLAb and the A. thaliana DELLA protein AtRGA in yeast. Protein truncations revealed the DOG1 domain as necessary and sufficient for interaction with PpDELLA proteins. Spores of Ppdog1-l1 mutant germinate faster than wild type, but replacement with AtDOG1 reverses this effect. Our data demonstrate a role for the PpDOG1-LIKE1 protein in moss spore germination, possibly alongside PpDELLAs. This suggests a conserved DOG1 domain function in germination, albeit with differential adaptation of regulatory networks in seed and spore germination.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.16537DOI Listing

Publication Analysis

Top Keywords

spore germination
12
delay germination
8
dog1-like protein
8
germination
8
moss physcomitrium
8
physcomitrium patens
8
flowering plants
8
function germination
8
dog1 domain-containing
8
domain-containing genes
8

Similar Publications

Strain TE5 was isolated from a wheat ( L. subsp. ) rhizosphere grown in a commercial field of wheat in the Yaqui Valley in Mexico.

View Article and Find Full Text PDF

This study investigated whether viable cells, dead cells or cell-free supernatants (CFS) were responsible for the biocontrol effect of strains from two important bacterial genera, and , known for their antifungal properties against plant pathogens and food spoilage microorganisms. Specifically, the capability of these strains to produce extracellular hydrolytic enzymes on specified media was assessed, along with their effectiveness in inhibiting the mycelial growth of several phytopathogenic fungi (, , and ) using dual culture plate assays. Results from these inhibition assays revealed that PF05 and LMG 23520 strains were the most effective in suppressing fungal growth, especially .

View Article and Find Full Text PDF

type F is a spore-forming bacterium that causes human illnesses, including food poisoning (FP) and non-foodborne gastrointestinal diseases. In this study, we evaluated the antimicrobial activities of 15 natural products against spore growth. Among them, garlic, onion juice, and undiluted essential oil constituents (EOCs) of clove, rosemary, and peppermint showed the strongest activity.

View Article and Find Full Text PDF

The fungal genus is noted for its bioluminescence and the production of biologically active secondary metabolites. We isolated 47 fungal strains of germinated from spores of a single mushroom. We first noted a high degree of variation in the outward appearances in radial growth and pigmentation among the cultures.

View Article and Find Full Text PDF

Rice false smut (RFS) is pervasive and has emerged as the primary disease affecting rice productivity. Due to the lack of effective chemical control, disease-resistant varieties are the primary method of managing the disease. This study aimed to investigate the influence of biological characteristics such as hyphal growth rate, spore production and germination ability on the pathogenicity of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!