A Mammalian Conserved Circular RNA CircLARP1B Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism.

Adv Sci (Weinh)

Department of Laboratory Medicine, The First Affiliated Hospital of USTC, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China.

Published: January 2024

Circular RNAs (circRNAs) have emerged as crucial regulators in physiology and human diseases. However, evolutionarily conserved circRNAs with potent functions in cancers are rarely reported. In this study, a mammalian conserved circRNA circLARP1B is identified to play critical roles in hepatocellular carcinoma (HCC). Patients with high circLARP1B levels have advanced prognostic stage and poor overall survival. CircLARP1B facilitates cellular metastatic properties and lipid accumulation through promoting fatty acid synthesis in HCC. CircLARP1B deficient mice exhibit reduced metastasis and less lipid accumulation in an induced HCC model. Multiple lines of evidence demonstrate that circLARP1B binds to heterogeneous nuclear ribonucleoprotein D (HNRNPD) in the cytoplasm, and thus affects the binding of HNRNPD to sensitive transcripts including liver kinase B1 (LKB1) mRNA. This regulation causes decreased LKB1 mRNA stability and lower LKB1 protein levels. Antisense oligodeoxynucleotide complementary to theHNRNPD binding sites in circLARP1B increases the HNRNPD binding to LKB1 mRNA. Through the HNRNPD-LKB1-AMPK pathway, circLARP1B promotes HCC metastasis and lipid accumulation. Results from AAV8-mediated hepatocyte-directed knockdown of circLARP1B or Lkb1 in mouse models also demonstrate critical roles of hepatocytic circLARP1B regulatory pathway in HCC metastasis and lipid accumulation, and indicate that circLARP1B may be potential target of HCC treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787103PMC
http://dx.doi.org/10.1002/advs.202305902DOI Listing

Publication Analysis

Top Keywords

metastasis lipid
16
lipid accumulation
16
lkb1 mrna
12
circlarp1b
11
mammalian conserved
8
hepatocellular carcinoma
8
critical roles
8
hcc metastasis
8
hcc
6
lipid
5

Similar Publications

Objective: Oral squamous cell carcinoma (OSCC) is a common malignant tumor worldwide. Surfeit 4 (SURF4) is a member of the surfeit gene family and plays a regulatory role in various cellular processes, such as protein transport and lipid metabolism. Therefore, this study aims to investigate the regulatory role and mechanisms of SURF4 in OSCC.

View Article and Find Full Text PDF

Ferroptosis: A novel cell death modality in or synergistic therapeutic strategy for photodynamic therapy.

Photodiagnosis Photodyn Ther

December 2024

Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China. Electronic address:

Although there has been significant progress in current comprehensive anticancer treatments centered on surgery, postoperative recurrence and tumor metastasis still significantly affect both prognosis and quality of life of the patient. Hence, the development of precisely targeted tumor therapies and exploration of immunotherapy represent ideal strategies for tumor treatment. Photodynamic therapy (PDT) is a localized and relatively safe treatment modality that not only induces multiple modes of tumor cell death but also mediates the secondary immunological responses against tumor resistance and metastasis.

View Article and Find Full Text PDF

Drug resistance is an important factor for prostate cancer (PCa) to progress into refractory PCa, and abnormal lipid metabolism usually occurs in refractory PCa, which presents great challenges for PCa therapy. Here, a cluster of differentiation 36 (CD36) inhibitor sulfosuccinimidyl oleate sodium (CD36i) and stearoyl-CoA desaturase 1 (SCD1) siRNA (siSCD1) are selected to inhibit lipid uptake and synthesis in PCa, respectively. To this end, a multiresponsive drug delivery nanosystem, HA@CD36i-TR@siSCD1 is designed.

View Article and Find Full Text PDF

LPCAT3 regulates the proliferation and metastasis of serous ovarian cancer by modulating arachidonic acid.

Transl Oncol

December 2024

Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China. Electronic address:

Background: Lysophosphatidylcholine acyltransferase 3 (LPCAT3) promotes ferroptosis through the incorporating polyunsaturated fatty acids into membrane phospholipids, however, its role in serous ovarian cancer remains unclear. Here explored cancer proliferation and metastasis after modulating LPCAP3.

Methods: LPCAT3 protein in ovarian cancer tissues was detected using bioinformatic and immunohistoche mical assays.

View Article and Find Full Text PDF

A Collection of Novel Antitumor Agents That Regulate Lipid Metabolism in the Tumor Microenvironment.

J Med Chem

December 2024

Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China.

Lipid metabolism disorder is the cause of one of the most significant metabolic changes in tumors. In the process of tumor occurrence and development, tumor cells choose a continuous metabolic adaptation to accommodate the changing environment to the maximum extent possible. In a variety of tumors, the uptake, production, and storage of lipids are generally upregulated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!