Initial reports signify some specific isolated locations in different latitudes, revealing a paradoxical increase in both heavy and very heavy rainfall events and also an increment in total, i.e., in both rainfall and temperature, over ecologically sensitive areas along the Western Ghats (WG). This paper presents a coherent study of the full-scale of daily rainfall and temperature over 27 well-spaced stations in the study area to determine its extent and investigate whether or not this contradictory behaviour is real. Also, an attempt has been made to assess the differential behaviour of rainfall, temperature, and heavy rainfall events in association with land use and land cover change (LULC). The analysis revealed that rainfall and temperature over the study area are increasing, whereas heavy rainfall events have increased during 1981-2020 with strong peaks after 2000 around 18-19°N (Mumbai metropolitan region), 14-16°N (mining and quarrying regions in Goa), and 9-12°N (a narrow strip of land spanning across the coastal towns of Karnataka and Kerala) latitudes. The majority of the rainfall excess years coincided with El Nino years, indicating that El Nino does not affect rainfall negatively. However, rainfall over the WG is influenced by local relief and cascading topography. The spatial pattern of average annual rainfall shows a decreasing trend from south to north because the elevation and span of rainfall occurrence are higher in the southern part of WG. The findings of the current research will help in building a strategy to address trends and patterns of climatic variables in association with LULC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-023-12004-zDOI Listing

Publication Analysis

Top Keywords

rainfall temperature
20
rainfall
13
heavy rainfall
12
rainfall events
12
behaviour rainfall
8
temperature ecologically
8
ecologically sensitive
8
sensitive areas
8
areas western
8
western ghats
8

Similar Publications

With climate change projections indicating an increase in the frequency of extreme heat events and irregular rainfall patterns globally, the threat to global food security looms large. Terminal heat stress, which occurs during the critical reproductive stage, significantly limits lentil productivity. Therefore, there is an urgent need to improve lentil's resilience to heat stress to sustain production.

View Article and Find Full Text PDF

We identified a set of bias-corrected and downscaled Coupled Model Intercomparison Project 6 (CMIP6) models capable of accurately simulating the observed mean Indian summer monsoon rainfall, extreme rain events (EREs) and their respective interannual variability. The future changes in EREs projected by these models for four climate change scenarios-Shared Socioeconomic Pathways (SSPs), 1-2.6, 2-4.

View Article and Find Full Text PDF

Climate change aggravates bird mortality in pristine tropical forests.

Sci Adv

January 2025

Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus 69060-001, Amazonas, Brazil.

Stable understory microclimates within undisturbed rainforests are often considered refugia against climate change. However, this assumption contrasts with emerging evidence of Neotropical bird population declines in intact rainforests. We assessed the vulnerability of resident rainforest birds to climatic variability, focusing on dry season severity characterized by hotter temperatures and reduced rainfall.

View Article and Find Full Text PDF

The geographical distribution of Lyme disease has been attributed to changes in Earth's climate and associated distribution of its vector, ticks of the genus . This study focuses on the impact of climatic and meteorological conditions on Lyme disease transmission in East Central Ohio, an emerging hotspot of cases. Using county-level data from 2001 to 2023, we analyzed the relationship between Lyme disease cases and temperature, precipitation, and the Southern Oscillation Index (SOI) using a distributed lag nonlinear model (DLNM).

View Article and Find Full Text PDF

Background: Dengue fever (DF) poses a growing global threat, necessitating a comprehensive one-health approach to address its complex interplay between human, animal, and environmental factors. In Oyo State, Nigeria, the true burden of DF remains unknown due to underdiagnosis and misdiagnosis as malaria, exacerbated by poor health-seeking behavior, weak surveillance systems, and inadequate health infrastructure. Adopting a one-health approach is crucial to understanding the dynamics of DF transmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!