A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Zircons reveal the history of fluctuations in oxidation state of crustal magmatism and supercontinent cycle. | LitMetric

We apply a zircon redox index to a global compilation of detrital zircons to track the variation of oxidation state, expressed as ΔFMQ, through Earth's history. Those from I-type rocks, which comprise mantle and crustal igneous protoliths, including tonalite-trondhjemite-granodiorites (TTGs), generally have a high oxidation state (ΔFMQ > 0). In contrast, zircons from igneous rocks derived from supracrustal source rocks (S-type) are commonly reduced (ΔFMQ < 0). With the probability density function derived from the Gaussian-Kernel-Density-Estimation, we use the maximum likelihood estimation (MLE) to distinguish S-type from I-type zircons through Earth's history using zircon redox. Voluminous S-type magma production shows a ca. 600 Ma cyclicity that is closely related to the supercontinent cycle. We link a cyclic drop in redox values after 2.6 Ga to periodic S-type magma generation associated with burial and melting of metasedimentary rocks during supercontinent assembly and amalgamation. The ΔFMQ of the detrital zircons rise at ∼3.5 Ga followed by a consistent average ΔFMQ > 0 over the last 3 Ga. Given that the redox state of magmas is independent of crustal thickness and silica variation, and elevated values are likely more closely related to tectonic setting, we suggest that the consistent average ΔFMQ > 0 from ca. 3.5 Ga onwards relates to recycling of oceanic lithosphere back into the mantle in what eventually became established as subduction zones. The more reduced magmas associated with sedimentary sources, became established at 2.6 Ga, presumably in response to continental rocks rising above sea-level, and follow peaks of productivity associated with the supercontinent cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2023.10.034DOI Listing

Publication Analysis

Top Keywords

oxidation state
12
zircons reveal
4
reveal history
4
history fluctuations
4
fluctuations oxidation
4
state crustal
4
crustal magmatism
4
magmatism supercontinent
4
supercontinent cycle
4
cycle apply
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!