A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Towards Automated Vocal Mode Classification in Healthy Singing Voice-An XGBoost Decision Tree-Based Machine Learning Classifier. | LitMetric

Towards Automated Vocal Mode Classification in Healthy Singing Voice-An XGBoost Decision Tree-Based Machine Learning Classifier.

J Voice

Department of Language and Communication, Centre for Language Studies, Radboud University, Nijmegen, the Netherlands.

Published: November 2023

Auditory-perceptual assessment is widely used in clinical and pedagogical practice for speech and singing voice, yet several studies have shown poor intra- and inter-rater reliability in both clinical and singing voice contexts. Recent advances in artificial intelligence and machine learning offer models for automated classification and have demonstrated discriminatory power in both pathological and healthy voice. This study develops and tests an XGBoost decision tree based machine learning classifier to develop automated vocal mode classification in healthy singing voice. Classification models trained on mel-frequency cepstrum coefficients, MFCC-Zero-Time Windowing, glottal features, voice quality features, and α-ratios demonstrated 92% average F1-score accuracy in distinguishing metallic and non-metallic singing for male singers and 87% average F1-score for female singers. The model distinguished vocal modes with 70% and 69% average F1-score for male and female samples, respectively. Model performance was compared to human auditory-perceptual assessments of 64 corresponding samples performed by 41 professional singers. The model performed with approximating or subpar performance to human assessors on task-matched problems. The XGBoost gains observed across tested features reveal that the most important attributes for the tested classification problems were MFCCs and α-ratios between high and low frequency energy, with models trained on only these features achieving performance not statistically significantly different from the best tested models. The best automated models in this study do not yet match human auditory-perceptual discrimination but improve on previously reported F1-average accuracies in automated classification in singing voice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jvoice.2023.09.006DOI Listing

Publication Analysis

Top Keywords

singing voice
16
machine learning
12
average f1-score
12
automated vocal
8
vocal mode
8
mode classification
8
classification healthy
8
healthy singing
8
xgboost decision
8
learning classifier
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!