Idiopathic pulmonary fibrosis (IPF), as the most common idiopathic interstitial pneumonia, is caused by a complex interaction of pathological mechanisms. Interestingly, IPF frequently occurs in the middle-aged and elderly populations but rarely affects young people. Salvianolic acid B (SAB) exerts antioxidant, antiinflammatory, and antifibrotic bioactivities and is considered a promising drug for pulmonary disease treatment. However, the pharmacological effects and mechanisms of SAB on cellular senescence of lung cells and IPF development remain unclear. We used bleomycin (BLM)-induced pulmonary fibrosis mice and different lung cells to investigate the antisenescence impact of SAB and explain its underlying mechanism by network pharmacology and the Human Protein Atlas database. Here, we found that SAB significantly prevented pulmonary fibrosis and cellular senescence in mice, and reversed the senescence trend and typical senescence-associated secretory phenotype (SASP) factors released from lung macrophages and alveolar type II (AT2) epithelial cells, which further reduced lung fibroblasts activation. Additionally, SAB alleviated the epithelial-mesenchymal transition process of AT2 cells induced by transforming growth factor beta. By predicting potential targets of SAB that were then confirmed by chromatin immunoprecipitation-qPCR technology, we determined that SAB directly hampered the binding of transcription factor stimulating protein 1 to the promoters of SASPs (P21 and P16), thus halting lung cell senescence. We demonstrated that SAB reduced BLM-induced AT2 and macrophage senescence, and the subsequent release of SASP factors that activated lung fibroblasts, thereby dual-relieving IPF. This study provides a new scientific foundation and perspective for pulmonary fibrosis therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ptr.8070 | DOI Listing |
Elife
January 2025
Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Department of Mechanical Engineering, University of California, Riverside CA, USA.
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide and the progressive nature heightens the calamity of the disease. Despite countless existing COPD studies, lung mechanics are often reported under positive-pressure ventilation (PPV) and implications and extrapolations made from these studies pose serious restrictions as recent works have divulged disparate elastic and energetic results between PPV and more physiological negative-pressure counterparts (NPV). This non-equivalence of PPV and NPV needs to be investigated under diseased states to augment our understanding of disease mechanics.
View Article and Find Full Text PDFCroat Med J
December 2024
Grgur Salai, University Hospital Dubrava, Avenija Gojka Šuška 6, 10000 Zagreb, Croatia,
Aim: To investigate histopathological changes in the lung tissue of long-COVID patients.
Methods: In this cross-sectional study, transbronchial lung biopsy was performed in long-COVID patients with persisting symptoms and radiological abnormalities. Histopathologic analyses were performed by using hematoxylin-eosin, Martius, Scarlet and Blue, Movat's, thyroid transcription factor 1, CD34, and CD68 staining.
ERJ Open Res
January 2025
Department of Otolaryngology-Head and Neck Surgery, University of California, Los Angeles, Los Angeles, CA, USA.
Background: Chronic rhinosinusitis (CRS) and olfactory dysfunction (OD) are prevalent disease complications in people with cystic fibrosis. These understudied comorbidities significantly impact quality of life. The impact of highly effective modulator therapy (HEMT) in young children with cystic fibrosis (YCwCF) on these disease complications is unknown.
View Article and Find Full Text PDFERJ Open Res
January 2025
Department of Pediatrics and Center for Cystic Fibrosis, Hadassah University Medical Center, Hebrew University Hadassah Medical School, Jerusalem, Israel.
Background: People with cystic fibrosis (CF) variants that exhibit residual function (RF) of the CF transmembrane conductance regulator are considered to have a milder disease; however, the spectrum of CF phenotype within the different RF variants has not been extensively investigated. The aim of the present study was to characterise the spectrum of CF disease severity in people with CF (pwCF) carrying different RF variants, using the European Cystic Fibrosis Society Patient Registry (ECFSPR) data.
Methods: A retrospective cross-sectional and longitudinal cohort study included data from the ECFSPR during 2008-2016.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!