An engineered Escherichia coli Nissle strain prevents lethal liver injury in a mouse model of tyrosinemia type 1.

J Hepatol

Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, China; Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China. Electronic address:

Published: March 2024

Background & Aims: Hereditary tyrosinemia type 1 (HT1) results from the loss of fumarylacetoacetate hydrolase (FAH) activity and can lead to lethal liver injury. Therapeutic options for HT1 remain limited. In this study, we aimed to construct an engineered bacterium capable of reprogramming host metabolism and thereby provide a potential alternative approach for the treatment of HT1.

Methods: Escherichia coli Nissle 1917 (EcN) was engineered to express genes involved in tyrosine metabolism in the anoxic conditions that are characteristic of the intestine (EcN-HT). Bodyweight, survival rate, plasma (tyrosine/liver function), H&E staining and RNA sequencing were used to assess its ability to degrade tyrosine and protect against lethal liver injury in Fah-knockout (KO) mice, a well-accepted model of HT1.

Results: EcN-HT consumed tyrosine and produced L-DOPA (levodopa) in an in vitro system. Importantly, in Fah-KO mice, the oral administration of EcN-HT enhanced tyrosine degradation, reduced the accumulation of toxic metabolites, and protected against lethal liver injury. RNA sequencing analysis revealed that EcN-HT rescued the global gene expression pattern in the livers of Fah-KO mice, particularly of genes involved in metabolic signaling and liver homeostasis. Moreover, EcN-HT treatment was found to be safe and well-tolerated in the mouse intestine.

Conclusions: This is the first report of an engineered live bacterium that can degrade tyrosine and alleviate lethal liver injury in mice with HT1. EcN-HT represents a novel engineered probiotic with the potential to treat this condition.

Impact And Implications: Patients with hereditary tyrosinemia type 1 (HT1) are characterized by an inability to metabolize tyrosine normally and suffer from liver failure, renal dysfunction, neurological impairments, and cancer. Given the overlap and complementarity between the host and microbial metabolic pathways, the gut microbiome provides a potential chance to regulate host metabolism through degradation of tyrosine and reduction of byproducts that might be toxic. Herein, we demonstrated that an engineered live bacterium, EcN-HT, could enhance tyrosine breakdown, reduce the accumulation of toxic tyrosine byproducts, and protect against lethal liver injury in Fah-knockout mice. These findings suggested that engineered live biotherapeutics that can degrade tyrosine in the gut may represent a viable and safe strategy for the prevention of lethal liver injury in HT1 as well as the mitigation of its associated pathologies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2023.10.037DOI Listing

Publication Analysis

Top Keywords

lethal liver
28
liver injury
28
tyrosinemia type
12
degrade tyrosine
12
engineered live
12
tyrosine
10
liver
9
escherichia coli
8
coli nissle
8
hereditary tyrosinemia
8

Similar Publications

Spliced exon9 ADRM1 promotes liver oncogenicity via selective degradation of tumor suppressor FBXW7.

J Hepatol

January 2025

Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin, Hong Kong, China. Electronic address:

Background & Aims: The ubiquitin receptor ADRM1/Rpn13 governs the specificity of eukaryotic protein degradation. By SMRT sequencing, we first discovered a novel spliced variant of ADRM1 with a skipped exon 9, termed ADRM1-ΔEx9, in human hepatocellular carcinoma (HCC). This study aimed to elucidate this novel ubiquitin receptor's underlying biology and clinical implications in HCC.

View Article and Find Full Text PDF

A Dual-Targeting Biomimetic Nanoplatform Integrates SDT/CDT/Gas Therapy to Boost Synergistic Ferroptosis for Orthotopic Hepatocellular Carcinoma Therapy.

Adv Sci (Weinh)

January 2025

Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.

The development of efficient therapeutic strategies to promote ferroptotic cell death offers significant potential for hepatocellular carcinoma (HCC) treatment. Herein, this study presents an HCC-targeted nanoplatform that integrates bimetallic FeMoO nanoparticles with CO-releasing molecules, and further camouflaged with SP94 peptide-modified macrophage membrane for enhanced ferroptosis-driven multi-modal therapy of HCC. Leveraging the multi-enzyme activities of the multivalent metallic elements, the nanoplatform not only decomposes HO to generate oxygen and alleviate tumor hypoxia but also depletes glutathione to inactivate glutathione peroxides 4, which amplify sonodynamic therapy and ferroptotic tumor death under ultrasound (US) irradiation.

View Article and Find Full Text PDF

The Effects of Moderate to High Static Magnetic Fields on Pancreatic Damage.

J Magn Reson Imaging

January 2025

High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.

Background: Pancreatic damage is a common digestive system disease with no specific drugs. Static magnetic field (SMF), the key component of magnetic resonance imaging (MRI), has demonstrated prominent effects in various disease models.

Purpose: To study the effects of 0.

View Article and Find Full Text PDF

Aclonifen is a diphenyl ether herbicide being included in the list of priority substances. Nevertheless, the data related to its sublethal effects on fish are limited. Therefore, the present study has been carried out to investigate the toxic effects of aclonifen in juvenile following 24, 48, 72 and 96 hours of application to sublethal concentrations of 12.

View Article and Find Full Text PDF

A Small-Molecule Inhibitor of Gut Bacterial Urease Protects the Host from Liver Injury.

ACS Chem Biol

January 2025

Harvard University, Department of Chemistry and Chemical Biology, Cambridge, Massachusetts 02138, United States.

Hyperammonemia is characterized by the accumulation of ammonia within the bloodstream upon liver injury. Left untreated, hyperammonemia contributes to conditions such as hepatic encephalopathy that have high rates of patient morbidity and mortality. Previous studies have identified gut bacterial urease, an enzyme that converts urea into ammonia, as a major contributor to systemic ammonia levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!