Transitional responses of tree growth to climate warming at the southernmost margin of high latitudinal permafrost distribution.

Sci Total Environ

State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.

Published: January 2024

The marked increase in temperature warming and permafrost degradation has raised apprehensions about the fate of forests of boreal forests in permafrost regions. However, the impact of climate on tree growth is not limited to direct effects but also involves complex interactions with permafrost. The degradation of permafrost poses a threat to forest growth that has received insufficient attention thus far, after analyzing the impact of permafrost degradation and climate on Dahurican larch (Larix gmelinii) growth from six forest sites with two maximum active layer thickness (ALT) classifications (more and less than tree root length) across the southern margin of the permafrost region. We found that accompanying the continued degradation of permafrost, tree growth was inhibited (slope = -0.67, p < 0.05) by the degradation of permafrost and the growth-climate relationship was shifted from positive to negative at maximum ALT less than tree root length sites. However, the growth rate of trees significantly accelerated (slope = 5.46, p < 0.05) at maximum ALT more than tree root length sites. Path analysis indicated that tree growth did not benefit from temperature warming and more stress could be caused by waterlogging due to permafrost degradation at maximum ALT less than tree root length sites, however, enhanced tree growth primarily by reducing the physical spatial constraints and root layer additional water source with permafrost degradation at maximum ALT more than tree root length sites. It also implies that the matchiness between tree root and maximum active layer depth is critical to the effect of permafrost degradation on tree growth. The transitional response to climate warming and the opposite trend of tree growth at two ALT classification sites suggest that future tree growth responds to the different stages of permafrost degradation differently. Our study provides a new insight on permafrost degradation impact on tree growth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.168503DOI Listing

Publication Analysis

Top Keywords

tree growth
12
permafrost degradation
12
permafrost
8
degradation permafrost
8
growth
5
transitional responses
4
tree
4
responses tree
4
growth climate
4
climate warming
4

Similar Publications

Growth decline in European beech associated with temperature-driven increase in reproductive allocation.

Proc Natl Acad Sci U S A

February 2025

Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland.

Climate change is impacting forests in complex ways, with indirect effects arising from interactions between tree growth and reproduction often overlooked. Our 43-y study of European beech () showed that rising summer temperatures since 2005 have led to more frequent seed production events. This shift increases reproductive effort but depletes the trees' stored resources due to insufficient recovery periods between seed crops.

View Article and Find Full Text PDF

First report of causing black foot on walnut in Chile.

Plant Dis

January 2025

Universidad de Chile, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronomicas, Casilla 1004, Santiago, Chile, 8820000;

Walnut (Juglans regia L.) is the primary nut tree cultivated in Chile, covering 44.626 ha.

View Article and Find Full Text PDF

Fig (Ficus carica L.) holds economic significance in Atushi, Xinjiang, but as fig cultivation expands, disease prevalence has risen. In July 2024, approximately 22% of harvested fig (cv.

View Article and Find Full Text PDF

First report of strawberry root rot caused by in China.

Plant Dis

January 2025

Hebei Academy of Agricultural and Forestry Sciences, Plant Protection Institute, 437 Dongguan Street, Baoding, Hebei, China, 071000.

Strawberry () is an important economic crop in Hebei, China. In May 2023, root rot was observed in strawberry plantations (cultivar 'Benihoppe') in Shijiazhuang (37°57'23″N, 115°16'34″E), Hebei, China. The incidence of the disease reached up to 30% in the field.

View Article and Find Full Text PDF

Effect of transgene on salt tolerance of tobacco.

Transgenic Res

January 2025

Forest Department, College of Forestry, Hebei Agricultural University, Baoding, 071000, China.

To explore the effects of salt-tolerance gene accumulation on salt tolerance in transgenic plant, we used four types of plant expression vector (N27, N28, N29, and N30) carrying mtlD, mtlD + gutD, mtlD + gutD + BADH, mtlD + gutD + BADH + sacB genes respectively, to transform tobacco through Agrobacterium-mediated method. Transgenic lines were identified through polymerase chain reaction (PCR) detection. Transgenic lines and non-transgenic plant (CK) were subjected to 6‰ sodium chloride solution stress; then, fluorescence quantitative PCR (FQ-PCR) and salt tolerance indexes were used to assess characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!