This investigation involved the extraction of a novel polysaccharide from the spore fermentation broth of Tremella fuciformis using a method that combined ultrasonic and enzymatic assistance with ethanol precipitation. It was then compared with enzymatic and ultrasonic extraction methods. The objective of this research is to offer a reference point for expanding the application of ultrasonic-assisted enzymatic extraction technology in T. fuciformis polysaccharides (TFPs). Based on single-factor experiments, Box-Behnken was used to optimize the extraction conditions of TFPs by ultrasonic-enzymatic-assisted ethanol precipitation extraction. The results revealed an optimal combination of enzymes, with a cellulase-to-papain ratio of 2:1, an enzyme addition of 4000U/100 mL, an enzymolysis temperature of 49 °C, ultrasonicpower at 3 W/mL and an ultrasonictime of 20 min. The extraction rate of TFPs and α- amylase inhibition rates were 23.94 % and 61.44 %, respectively. Comparing the physicochemical properties, structural characterization and in vitro activity of TFPs extracted through different methods, the results showed that ultrasonic treatment significantly influences the apparent morphology of polysaccharide and could enhance its in vitro biological activity. However, different extraction techniques exhibit insubstantial impact on the chemical composition, glycosidic bonds or glycosidic ring configurations within the polysaccharides. Among them, ultrasonic-enzymatic-assisted ethanol precipitation extraction of polysaccharide has the highest extraction rate and the lowest viscosity. It has significant effects on ABTS scavenging activity, α- amylase inhibition rate and glucose dialysis retardation index, polysaccharide treated with ultrasonic-enzymatic showed the best performance. These findings suggest that ultrasonic-enzymatic-assisted ethanol precipitation extraction can enhance the activities of TFPs, thereby providing a valuable insight for their future development and application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665963PMC
http://dx.doi.org/10.1016/j.ultsonch.2023.106682DOI Listing

Publication Analysis

Top Keywords

ethanol precipitation
20
ultrasonic-enzymatic-assisted ethanol
16
precipitation extraction
12
extraction
10
tremella fuciformis
8
fuciformis polysaccharides
8
extraction rate
8
α- amylase
8
amylase inhibition
8
ethanol
5

Similar Publications

Development of Single-Walled Carbon Nanotube-Based Electrodes with Enhanced Dispersion and Electrochemical Properties for Blood Glucose Monitoring.

Biosensors (Basel)

December 2024

Department of Gyedang College of General Education, Sangmyung University, 31 Sangmyungdae-Gil, Dongnam-Gu, Cheonan 31066, Republic of Korea.

The evolution of high-performance electrode materials has significantly impacted the development of real-time monitoring biosensors, emphasizing the need for compatibility with biomaterials and robust electrochemical properties. This work focuses on creating electrode materials utilizing single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), specifically examining their dispersion behavior and electrochemical characteristics. By using ultrasonic waves, we analyzed the dispersion of CNTs in various solvents, including N, N-dimethylformamide (DMF), deionized water (DW), ethanol, and acetone.

View Article and Find Full Text PDF

Although Pb-based metal halide perovskites (MHPs) have excellent photoelectric characteristics, their toxicity remains a limiting factor for their widespread application. In the paper, a series of CsCuClxBr3-x (x = 1, 2, 3) MHP microcrystals were developed and their hydrogen evolution performance in ethanol and HX (X = Cl, Br) was also studied. Among them, CsCuCl3 microcrystals exhibit high hydrogen evolution performance in both HX and ethanol, attributed to their longest average lifetime and suitable band structure.

View Article and Find Full Text PDF

A novel multi-organ male model of alcohol-induced acute-on-chronic liver failure reveals NET-mediated hepatocellular death which is prevented by RIPK3 inhibition.

Cell Mol Gastroenterol Hepatol

December 2024

Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Broad Institute, Cambridge, MA. Electronic address:

Background And Aims: Alcohol abuse is the most frequent precipitating factor of acute-on-chronic liver failure (ACLF). We aimed at developing an alcohol-induced ACLF model and dissecting its underlying molecular mechanisms.

Methods: ACLF was triggered by a single alcohol binge (5g/Kg) in a bile duct ligation (BDL) liver fibrosis murine model.

View Article and Find Full Text PDF

Modification of a O-acetyl-glucomannan from Dendrobium officinale by selenylation modification and its anti-gastric cancer enhancing activity.

Int J Biol Macromol

December 2024

School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China. Electronic address:

In this study, a homogeneous polysaccharide, named YDOP-1 was isolated form Dendrobium officinale using hot water extraction and ethanol precipitation method. YDOP-1 was characterized to be a typical O-acetyl-glucomannan with the molecular wight was 13,456 Da. Cell viability and colony forming assay showed that YDOP-1 possess moderate anti-gastric cancer effects.

View Article and Find Full Text PDF

In vitro fermentation characteristics and modulation effects of polysaccharide fractions from Schisandra sphenanthera on intestinal microflora.

Int J Biol Macromol

December 2024

Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China. Electronic address:

Article Synopsis
  • SSPs (Schisandra Sphenanthera polysaccharides) were obtained using gradient ethanol precipitation, resulting in three fractions: SSP40, SSP60, and SSP80, each with distinct physicochemical properties.
  • SSP80 had a lower molecular weight and a unique monosaccharide composition, leading to increased porosity compared to the other fractions.
  • After fermentation, SSP80 significantly boosted short-chain fatty acid production and improved the balance of intestinal microflora by enhancing beneficial bacteria and reducing potentially harmful ones.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!