A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A facile and large-scale route to prepare nitrogen/oxygen (N/O) co-doped two-dimensional carbon nanomesh with excellent microwave absorption properties. | LitMetric

A facile and large-scale route to prepare nitrogen/oxygen (N/O) co-doped two-dimensional carbon nanomesh with excellent microwave absorption properties.

J Colloid Interface Sci

Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.

Published: February 2024

Two-dimensional porous carbon materials have been considered good candidates for developing lightweight microwave absorbers because of their low density and tunable dielectric constant. However, large-scale synthesis, with precise control of the microstructure, by a simple method, remains is still a great challenging. Herein, a two-dimensional N/O co-doped carbon nanomesh (NOCN) was prepared via large-scale route by simple carbonization of analogue polyurea (PU) nanosheet consisted of p-phenyldiisocyanate and urea, and the graphitization degree, porous structure, sheet size and the heteroatom doping content could be easily adjusted by controlling carbonization temperature. Thus, the electromagnetic parameter and the corresponding microwave absorption can be regulated. When the carbonization temperature was 900 °C (NOCN-900), the obtained sample exhibited the best microwave absorption performance, and the reflection loss (RL) value was -54.2 dB with an effective absorption bandwidth (EAB) of 7.44 GHz at a thickness of 2.3 under fill loading of only 5 wt%. The facile and large-scale synthesis route combined with excellent performance makes NOCN-900 to be a great promising candidate for practical application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.11.049DOI Listing

Publication Analysis

Top Keywords

microwave absorption
12
facile large-scale
8
large-scale route
8
n/o co-doped
8
carbon nanomesh
8
large-scale synthesis
8
carbonization temperature
8
route prepare
4
prepare nitrogen/oxygen
4
nitrogen/oxygen n/o
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!